
The Thirty-First AAAI Conference on Innovative Applications of Artificial Intelligence (IAAI-19)

Automated Dispatch of Helpdesk Email Tickets: Pushing the Limits with AI

Atri Mandal,1 Nikhil Malhotra,2 Shivali Agarwal,1 Anupama Ray,1 Giriprasad Sridhara1

1IBM Research AI, Bengaluru, India
2IBM Global Technology Services, Bengaluru, India

{atri.mandal,nikhilmal,shivaaga,anupamar,girisrid}@in.ibm.com

Abstract

Ticket assignment/dispatch is a crucial part of service de-
livery business with lot of scope for automation and opti-
mization. In this paper, we present an end-to-end automated
helpdesk email ticket assignment system, which is also of-
fered as a service. The objective of the system is to determine
the nature of the problem mentioned in an incoming email
ticket and then automatically dispatch it to an appropriate re-
solver group (or team) for resolution.
The proposed system uses an ensemble classifier augmented
with a configurable rule engine. While design of a classifier
that is accurate is one of the main challenges, we also need
to address the need of designing a system that is robust and
adaptive to changing business needs. We discuss some of the
main design challenges associated with email ticket assign-
ment automation and how we solve them. The design deci-
sions for our system are driven by high accuracy, coverage,
business continuity, scalability and optimal usage of compu-
tational resources.
Our system has been deployed in production of three major
service providers and currently assigning over 90,000 emails
per month, on an average, with an accuracy close to 90%
and covering at least 90% of email tickets. This translates to
achieving human-level accuracy and results in a net saving of
more than 50000 man-hours of effort per annum. Till date,
our deployed system has already served more than 700,000
tickets in production.

1 Introduction
The landscape of modern IT service delivery is changing
with increased focus on automation and optimization. Most
IT vendors today, have service platforms aimed towards
end-to-end automation for carrying out mundane, repeti-
tive labor-intensive tasks and even for tasks requiring hu-
man cognizance. One such task is ticket assignment/dispatch
where the service requests submitted by the end-users to the
vendor in the form of tickets are reviewed by a centralized
dispatch team and assigned to the appropriate service team
i.e. resolver group.

The dispatch of a ticket to the correct group of practition-
ers is a critical step in the speedy resolution of a ticket. In-
correct dispatch decisions can significantly increase the total

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

turnaround time for ticket resolution, as observed in a study
of an actual production system (Agarwal, Sindhgatta, and
Sengupta 2012). Several factors make the dispatcher’s job
challenging viz. need for in-depth knowledge of the roles
and responsibilities of various groups, heterogeneous and in-
formal nature of email text and high attrition rate in service
delivery teams (Mandal et al. 2018).

Given the fact that inefficiencies in dispatch have serious
business consequences, there has been a lot of interest in au-
tomating the assignment process, that is, the dispatching of a
ticket to an appropriate resolver group based on the problem
description. A number of different approaches have been
proposed for automating ticket dispatch (Agarwal, Sind-
hgatta, and Sengupta 2012)(Shao et al. 2008a)(Shao et al.
2008b)(Parvin, Bose, and Van Oyen 2009). The tickets may
be raised in different manners such as through voice, web
forms or e-mails to a centralized helpdesk team. Our pro-
posed system focuses on email tickets only but can be ap-
plied to other forms of tickets that use text. Although email
assignment may look like a simple text classification prob-
lem at first glance it becomes quite complex and challenging
when considered at industry scale.

Firstly, for large companies the number of resolver groups
can be quite large - of the order of 500 in some cases.
Many of these resolver groups cater to overlapping prob-
lems which can be disambiguated only with domain spe-
cific knowledge. Secondly in most businesses the helpdesk
teams themselves undergo constant changes for better ef-
ficiency and productivity leading to resolver groups being
split, merged or renamed. All of these changes inevitably
impact the accuracy of machine learning classifiers. Thirdly
the problems assigned to resolver groups themselves slowly
change over time. As such a once-trained model becomes
outdated over time as it cannot effectively assign tickets
mentioning new problems or old problems with a different
terminology (Mandal et al. 2018).

Main Contributions
In this paper we present a readily deployable end-to-end au-
tomatic email dispatch system, which has the following key
features:

1. An ensemble based classification engine that uses super-
vised machine learning to understand the nature of the

9381



problem from free unstructured email text and assign ac-
curately. The choice of ensemble is based on the results
of comprehensive study performed with various machine
learning and deep learning models as presented in sec-
tion 4.

2. A rule engine to i) handle domain specific content missed
by the ensemble classifier and ii) ensure business con-
tinuity. The rules are designed to strategically combine
with machine learning methods for effective disambigua-
tion of classes. Rules are specified through a customer-
independent framework.

3. An effective retraining strategy which ensures that the
models are up-to-date with the changes that happen over
time in the email utterances as well as resolver group or-
ganization.

We present a comprehensive study of the efficacy of different
machine-learning and deep-learning algorithms in helpdesk
email ticket classification. The results are presented with real
customer data from three different datasets – with the largest
of them having more than 700,000 emails and as many as
428 resolver groups. We were able to achieve human level
accuracy with more than 90% coverage on all the datasets
with the proposed system using minimal computational re-
sources.

The remainder of the paper is organized as follows.
Section 2 describes the related work. Section 3 gives an
overview of the system used for ticket classification and Sec-
tion 4 discusses the different components of the system. In
Section 5 we present our experimental results while we con-
clude in Section 6.

2 Related Work
Ticket dispatch has been addressed by (Agarwal, Sind-
hgatta, and Sengupta 2012) using Support Vector Machines
and discriminative keyword approach. They propose semi-
automated approach based on confidence scores. We have
surpassed their work to i) reach human level accuracy us-
ing advanced ensemble techniques for automated dispatch,
ii) scale it to hundreds of resolver groups and iii) incorporate
retraining strategies to adapt to changing data. Several other
researchers have studied different aspects of the problem of
routing tickets to resolver groups (Shao et al. 2008a)(Shao et
al. 2008b)(Parvin, Bose, and Van Oyen 2009). The work in
(Shao et al. 2008b) approaches the problem by mining res-
olution sequence data and does not access ticket description
at all. Its objective is to come up with ticket transfer rec-
ommendations given the initial assignment information. The
work in (Shao et al. 2008a) mines historical ticket data and
develops a probabilistic model of an enterprise social net-
work that represents the functional relationships among var-
ious expert groups in ticket routing. Based on this network,
the system then provides routing recommendations to new
tickets. This work also focuses on ticket transfers between
groups (given an initial assignment) without looking at the
ticket text content. The work in (Parvin, Bose, and Van Oyen
2009) is different and approaches the problem from a queue
perspective. This is more related to the issue of service times
and becomes particularly relevant when the ticket that has

Figure 1: Architecture of the proposed system

been dispatched to a group needs to be assigned to an agent.
There are some papers, which apply text classification tech-
niques to handle tickets (Dasgupta et al. 2014)(Zeng et al.
2017). The idea is that once ticket category is identified,
then the assignment to resolver groups can be done by man-
ual dispatchers quickly. However, none of the works talk
about the scale and retraining required in real-life deploy-
ment. In (Di Lucca 2002) tickets are automatically classified
based on description to route them to the right group. How-
ever, the work was applied on a small ticket set with only 8
groups. The work in (Kadar et al. 2011) attempts to classify
the incoming change requests into one of the fine-grained
activities in a catalog. Some other works (Potharaju, Jain,
and Nita-Rotaru 2013) and (Agarwal et al. 2017) talk about
a holistic approach of ticket category classification, cause
analysis and resolution recommendation. However, they do
not automate the process of assignment.

3 System Overview
Figure 1 shows the system architecture along with the data
flow diagram. Historical email ticket data is downloaded
from the ticketing tool (e.g. Remedy or ServiceNow) using
custom-built adapters. The downloaded emails are passed
through two stages of pre-processing for data enrichment.
The resolver group level pre-processing module uses tech-
niques like resolver group merging, long tail cutoff etc. to
reduce the noise in the email data. The training data is fur-
ther cleaned using text pre-processing methods (Manning et
al. 2014). The cleaned email data is then trained using an en-
semble of machine learning classifiers and the trained mod-
els are stored in a database.

When a user sends an email to the helpdesk account a
ticket is automatically generated and stored in the backend
ticketing tool. The newly generated tickets are downloaded
by the adapter and classified using the runtime that consists
of ensemble classifier and the rule engine. The classifica-
tion system returns a resolver group along with a confidence
score. If the confidence score is above a configured threshold
the ticket is routed to the returned resolver group. Otherwise

9382



the ticket is assigned back to manual queue for inspection
by human agent. The combination of ensemble classifier and
rule engine ensures that a high percentage of tickets (more
than 90%) are classified automatically by our system with a
low error rate.

We will now define key terms used in the rest of the pa-
per. Let N be the total number of email tickets. In the man-
ual assignment case let NH1 be the number of tickets for
which the ticket was ultimately resolved by the same group
to which the ticket was initially assigned. Let NH2 be the
number of tickets for which the initial and final groups differ.
Then human-level accuracy can be defined as:

Hacc =
NH1 × 100

N
where : N = NH1 +NH2

In the automated email assignment scenario tickets are as-
signed primarily by the assignment engine, which combines
both ensemble classifier, and rule engine. Let NX be the
total number of tickets actually assigned by the ensemble
classifier; NXcorr be the number of tickets which were pre-
dicted by ensemble and for which the resolver group pre-
dicted is correct i.e. the ticket was ultimately resolved by the
predicted resolver group; NR the number of tickets where
the resolver group was predicted by the rule engine; and
NRcorr the number of tickets which were predicted by rule
engine and the predicted resolver group was correct. Then
we can define Ensemble Accuracy(Xacc),Ensemble Cover-
age (Xcov), Assignment Engine Accuracy (Eacc) and Assign-
ment Engine Coverage (Ecov) as follows:

Xacc =
NXcorr × 100

NX
,Xcov =

NX × 100

N

Eacc =
(NXcorr +NRcorr)× 100

NX +NR
,

Ecov =
(NX +NR)× 100

N

4 Assignment Engine Components
Having defined the system, we now describe in detail the
different functional components of the assignment engine.

Preparation of Training Data
This section explains the bootstrapping phase of our system.
The ticketing tool (Remedy, ServiceNow etc.) organizes
email data into structured fields containing relevant informa-
tion about the ticket e.g. incident type, creation date, prob-
lem description, resolver group etc. We use custom adapters
to connect to the ticketing tool and extract fields relevant for
training. Currently the adapter extracts only the text portion
of the email (viz. email subject and body) along with the re-
solver group for training. The steps involved in training data
preparation are described below.

Resolver group level pre-processing This type of pre-
processing is a one-time effort required during customer on-
boarding phase. The purpose of this pre-processing is to
reduce noise in the training data. We reduce noise and en-
rich training data for the resolver groups using the following
techniques:

Figure 2: Resolver group frequency distribution showing IT
and IL for dataset C

Merging related resolver groups Some of the resolver
group labels in the training data can be merged. Merging
increases the size of the training data and at the same time
reduces the number of unique labels thus improving train-
ing accuracy. We found that there are at least two types of
resolver groups that can be merged for assignment purpose.
a) Resolver groups with varying escalation levels: Firstly
there are some tickets for which the final assigned group is
one of various escalation levels (e.g. Tier1, Tier2 etc.) of the
same resolver group. However the helpdesk often assigns
directly to only one of these escalation levels. Escalations
to higher levels usually happen after additional information
is sought from the customer. But it is enough to assign the
ticket initially to the default escalation level. b) Region spe-
cific resolver groups: Sometimes tickets are meant to be re-
solved based on the user location. In that case the tickets are
assigned to a particular region and is resolved by an agent lo-
cally. To merge these resolver groups we create a new label
and assign all the region specific tickets to this label. After
the initial assignment, the correct resolver group can be in-
ferred based on some other fields in the ticket e.g. end-user
location or originator email-id etc. using the rule engine.

Long tail cutoff We observed that in most of the datasets
there are a large number of resolver groups with very few
samples. If we plot a histogram of frequencies these groups
will constitute more than 80% of the resolver groups but
less than 10% of training data. Our studies indicate that, if
the long tail is included in training, the overall accuracy of
classification goes down along with a significant increase in
training time and model size. By restricting the number of
resolver groups in training we reduce noise significantly and
also avoid class imbalance, resulting in increase of accuracy.
Additionally, the resolver groups, which fall in the long tail,
can often be predicted better using the rule engine (refer Ta-
ble 5) and using some augmentation techniques. As such our
strategy was to divide the downloaded historical data into 2
parts viz. IH = IT + IL where IH is the complete data down-
loaded for training, IT is the data used for training classi-
fiers and IL is the long tail. Resolver groups belonging to IT
will be classified using trained models while those belong-
ing to IL will be handled exclusively by the rule engine. In
our system we use the above strategy to retain at least 98%
of data while cutting down the resolver group count to less
than 20%. Figure 2 shows the resolver group frequency dis-

9383



tribution for one of our datasets (dataset C).The evaluation
results are shown in Section 5.

Classification Models

This section presents our study on the performance of var-
ious machine-learning classifiers in classification of email
data, in terms of accuracy and training time. For training
the classification models, we concatenate the subject and
the body of the email(description) with a space in between
and use the resulting string as our training data. The resolver
group acts as the label for our training data. Table 1 and Ta-
ble 2 show the impact of various traditional machine learn-
ing models (Mitchell 1997) and deep neural network models
that were used. In order to improve accuracy and coverage
of the overall service, we use an ensemble (Kuncheva 2004).
Each pair of models were combined, and the final ensemble
classifier was chosen based on the accuracy and coverage.
As explained in Section 4, rule engine is important to handle
the long tail in class distribution and the final chosen ensem-
ble classifier in combination with the rule engine forms the
classification module of the service.

Training the classifiers We convert the training data
samples into word vector representation before applying
machine-learning algorithms. We observed that using tf-idf
representation increased the accuracy of traditional machine
learning algorithms for all datasets by at least 3-4%. Another
observation was that using bigrams also improved the accu-
racy for some datasets. Intuitively we can argue that this is
so because some bigrams like ‘account creation’, ‘account
deletion’, ‘password reset’ etc. are useful indicators in de-
ciding the resolver group. The hyperparameters were chosen
experimentally over 10-fold cross-validation on the datasets.

However, for learning deep neural networks, tf-idf repre-
sentation being extremely sparse is not useful. Distributed
representation of text creates a dense, low-dimensional rep-
resentation and is perhaps the main reason why deep learn-
ing saw major breakthroughs in natural language process-
ing (Mikolov et al. 2013). There are primarily two meth-
ods of learning the word embeddings: one in which word
embeddings are learnt while training the neural network;
and second using pretrained word vectors. We experimented
with both methods for classification (models learning word
embeddings being referred to CNN-WE, LSTM-WE, and
CNN-LSTM-WE in Table 2), and pretrained word-vector
representations (100-d GloVe vectors) (Pennington, Socher,
and Manning 2014) referred to as CNN-G, LSTM-G and
CNN-LSTM-G. A word embedding layer learnt on the in-
put domain is better suited to the domain but requires a lot
of training data and increases overall training time. Because
of diverse dataset sizes to be handled by our service, we use
pretrained 100-dimensional GloVe vectors trained on 6B to-
kens. We chose GloVe over word2vec as GloVe utilizes lo-
cal context-based learning (like word2vec) along with global
text statistics (as in classical vector space models such as La-
tent Semantic Analysis) (Pennington, Socher, and Manning
2014).

Rule Engine
The rule engine is one of the key components of our end-
to-end system which is used to handle scenarios typical of
an enterprise. Such scenarios typically correspond to busi-
ness design and decisions and are not amenable to machine-
learning or deep-learning classifiers. We list three main sce-
narios below:
1. Resolver group perturbations driven by business de-
cisions: Often resolver groups are either renamed or split
or merged to form new resolver groups. These decisions
are mostly taken to remove duplication of effort, or to ad-
dress macro-economic changes. As most of these decisions
are sudden, machine-learning models are not able to han-
dle classification for the newly formed classes, which affects
services in production.
2. Resolver groups belonging to the long tail: As discussed
before, in most datasets 20% of the classes account for more
than 90% of the tickets. The learning models are not trained
on the remaining 80% classes, which account for less than
10% of the overall ticket data, to reduce noise and avoid
class imbalance. Although this improves classification accu-
racy and time, the model will never learn to predict these
classes. For all these classes the rule engine is essential.
3. Presence of resolver groups with similar or overlap-
ping email format: Many helpdesk organizations use fixed
templates for submission of certain types of issues. The
same template can be used for multiple resolver groups.
When these tickets are used to train the machine learning
model, it learns the template structure rather than the actual
content. So the classification accuracy is very low for such
resolver groups (Table 5). Rule-engine addresses this issue
for the confusing classes to override the decision of the ma-
chine learning classifier.
Design of rule engine The rule engine is designed to have a
customer independent framework for rule specification and
is easy to configure using an user interface. The user in-
terface allows specification of rules using values of certain
ticket parameters e.g. email subject, description etc. and out-
put of the ensemble classifier. The rule engine can override
the output of the ensemble classifier in certain cases. Each
rule in the rule engine can be generically expressed by the
following equation:

φ1(f 1, v1) ∧ φ2(f 2, v2) ∧ φ3(f 3, v3) ∧ (CE = R)⇒ CF

where φi is a user-defined boolean function which depends
on the ticket field f i and a value vi, (which can be a keyword,
phrase or regular expression derived from the text content
of f i), CE denotes the ensemble classifier prediction, R de-
notes the resolver group for which the rule is applicable and
CF is the final resolver group predicted after application of
rule engine.

Some sample rules are shown in Table 3 for better under-
standing. (The value X in the table implies DON’T CARE)
1. The first rule is used for renaming cases, (ZZZ-SDK re-
named to ZZZ-GB-SDK) meaning if the ensemble predicted
class is ZZZ-SDK the final prediction will be ZZZ-GB-SDK

1Resolver group names (Columns CF and CE) are anonymized
to preserve confidentiality

9384



Table 1: Comparison of various Machine Learning Algorithms w.r.t. Accuracy and Training Time

LinearSVM KNN LR m-NB RF Adaboost Gradient
Boosting

Dataset A Accuracy(%) 87.3 80.12 79.48 72.68 81.41 31.5 75.6
Train-time(s) 7.8 260.5 43 17.3 363.75 4561 8612

Dataset B Accuracy(%) 83.42 72.58 79.95 64.19 74.91 32.98 65.1
Train-time(s) 76.12 2218.65 404.05 22.18 7190.16 332.97 95320.1

Dataset C Accuracy(%) 86.339 67.57 84.29 63.97 76.99 30.43 61.47
Train-time(s) 1001.06 1921.7 2992 167.5 20799.6 1288.63 126960

Table 2: Comparison of various Deep neural networks w.r.t. Accuracy and Training Time

MLP CNN-WE LSTM-WE CNN-G LSTM-G CNN-LSTM-G

Dataset A Accuracy(%) 85.8 74 76.94 74.01 71.64 73.24
Train-time(s) 184.12 183.75 5546.6 160.56 9833.7 1844.8

Dataset B Accuracy(%) 80.87 77.75 79.35 76.23 80.37 77.7
Train-time(s) 10858.15 8680.35 86651.57 1926 89280.94 23229.47

Dataset C Accuracy(%) 83.3 82.67 78.14 81.27 83.51 81.48
Train-time(s) 2779 10519.99 90149.9 6557.12 687483 60128.5

Table 3: Sample rules

f1 f2 f3 CE CF
X X X ZZZ-SDK ZZZ-GB-SDK

”HSS” X X ZZZ-MM ZZZ-HSS-MM
”replenish team” ”xyz” ”abc@xyz” X ZZZ-REPLEN

”HSS”AND”EWM” X X X ZZZ-HSS-WM

irrespective of the field values. The second rule is used for
commonly confused sets of resolver groups. Here, ensem-
ble is used to determine the commonly confused set [ZZZ-
MM, ZZZ-HSS-MM], then rule is applied to determine the
exact resolver group within the set. The third rule uses a
combination of values from three different fields to over-
ride machine-learning prediction. The fourth rule is similar
to third except that it uses value of only one field to make a
prediction. However the important thing to note is that there
is an order of precedence between rules two and four. Rules
two and four have a common match criteria for field f1 (viz.
the keyword HSS). In these cases we match the more restric-
tive rule first to minimize the possibility of false positives.

Model Selection and Ticket Dispatch
The email ticket dispatcher actually assigns the ticket to
a specific resolver group and updates the ticket. The dis-
patcher combines the results of the two classifiers and rule
engine using a dispatch algorithm to output the final predic-
tion and confidence score. If the confidence score of the final
result is below the configured threshold the ticket is assigned
to the manual queue. The pseudo code for the dispatcher al-
gorithm is given in Algorithm 1. In the algorithm, M1 and
M2 (with confidence cutoffs M1 cutoff and M2 cutoff
respectively) denote the ensemble classifier models chosen
based on results shown in Table 1 and Table 2. M1 is the
model having higher precision. InvokeClassifier invokes

Input : Email-Text, M1 cutoff, M2 cutoff
Output: result = <resolver grp, confidence>

result = [None, 0.0]

<M1 resolver group, M1 confidence> =
InvokeClassifier(M1, Email-Text)

if M1 confidence ≥M1 cutoff then
result = <M1 resolver group, M1 confidence>

end
else

<M2 resolver group, M2 confidence> =
InvokeClassifier(M2, Email-Text)

if M2 confidence ≥M2 cutoff then
result = <M2 resolver group,
M2 confidence>

end
else if M1 resolver group ==
M2 resolver group then

result = <M2 resolver group,
min(M1 cutoff,M2 cutoff)>

end
result =
ApplyRuleEngine(f 1, f 2, f 3, result.resolver grp)

if result.resolver grp 6= None then
/* Assign ticket to result.resolver grp

*/
return result

end
else

/* Assign ticket to manual queue
*/

return [None, 0.0]
Algorithm 1: Dispatch Algorithm

9385



a machine-learning classifier and returns the best prediction
for resolver group along with the corresponding confidence
value.ApplyRuleEngine invokes the rule engine on the re-
sults obtained from the ensemble classifier.

Retraining
We have already discussed how rule engine takes care of
changes happening in email data due to resolver groups get-
ting renamed, merged or split. However there are still other
changes in training data that need to be handled e.g. subtle
changes in email utterances over time. These changes can
happen due to various factors like resolver groups taking on
new problems, increased automation etc. To capture these
changes effectively we use a sliding window based retrain-
ing strategy. The sliding window ensures that training data
is refreshed periodically and the most recent changes are re-
tained, so the classifiers remain up-to-date.

However along with recent data we also need to keep
learning from past mistakes. As such in addition to the
sliding window data we also retain misclassified data from
previous periods. In our deployment environment the mis-
classifications from each slide interval are not directly added
for retraining. They are first supervised by a human agent for
false negatives. A false negative occurs when the assignment
engine predicts correctly but the ticket was transferred due
to some other reason not mentioned in the email. This ad-
ditional supervision is necessary to ensure high quality of
training data.

The length (W) of the sliding window is determined such
that the training data is sufficient for good accuracy. The
slide interval (t) is determined by the average time it takes
for a ticket to be fully resolved in the system. For produc-
tion deployment we used t=7 days and W=90 days. However
these values can vary depending on the nature of the dataset.

Deployment and Maintenance
The automated assignment engine is currently deployed as
a single tenant service hosted in a Kubernetes cluster (re-
fer to Figure 3). There are three REST APIs to achieve the
full functionality, namely i) /train - The call to train method
is asynchronous and it returns a training-id, ii) /status - To
check the status of a training in progress and iii) /classify
- The call to the classifier to predict the resolver group.
The ensemble classifier is run periodically on a GPU cluster
and the trained models stored in a cloud based object store.
The model id, datasource name and creation timestamp are
stored separately in a metadata store. The requests for train-
ing are handled sequentially. The end point for classify can
handle multiple requests in parallel.

There are mainly two components of the assignment en-
gine which need active maintenance viz. Retraining and
Rule Engine. The maintenance activity involves active mon-
itoring of the misclassified tickets and taking an action based
on whether the ticket was confused with a class in IT or IL.
In the former case, the misclassified sample is added to the
dataset for retraining; in the latter case rule engine modi-
fications may be needed like adding a rule to the rule en-
gine to cover the misclassification if possible. The rule en-
gine modifications are handled by subject matter experts in

Table 4: Dataset size, usage and results

Dataset A Dataset B Dataset C
Number of resolver groups 70 403 428

Duration of the training dataset 6 months 12 months 15months
Email tickets(N) in training set 11562 423343 712320

Duration in deployment 19 months 3 months 16 months
Tickets served/month(T) 1000 40,000 50,000

Total tickets served till date 19000 120,000 680,000
Ensemble Accuracy(Xacc) 90.07% 86.17% 89.61%
Ensemble Coverage(Xcov) 93.67% 92.88% 93.83%

Assignment Engine Accuracy(Eacc) 92.73% 88.66% 92.13%
Assignment Engine Coverage(Ecov) 97.84% 93.3% 95.5%

Figure 3: Deployment Architecture

the helpdesk and requires about 5 hrs of manual effort per
week. The scripts for generation of misclassification reports,
triggering re-training and the entire assignment engine code
are maintained by a team of 2 developers (working for 5
hrs/week per account).

5 Evaluation
This section enumerates the results of evaluation of the as-
signment engine. For evaluation we have used real datasets
from three major helpdesk service provider accounts. The
client accounts are from two different domains viz. telecom
and supply-chain/logistics. To preserve client confidentiality
we henceforth refer to these datasets as Dataset A, Dataset
B and Dataset C respectively. The datasets were divided into
training and test sets with a 90:10 split and we used 10-fold
cross-validation on the datasets. All our experiments were
run on a NVIDIA Tesla K80 GPU cluster with 4 CUDA-
enabled nodes. The dataset statistics as well as the final ac-
curacy numbers achieved by our system are described in Ta-
ble 4.

Human Accuracy vs. Assignment Engine Accuracy
We next look at the optimal selection of algorithms that max-
imize accuracy and coverage. It is important to note that
for business purposes the algorithms need to have at least
human-level accuracy along with reasonably high coverage.

To compute human accuracy we mined audit logs of the
ticketing systems. Our experiments reveal that across all
datasets the accuracy achieved by human agents is about
85%. Therefore we select the confidence threshold such
that the expected accuracy of prediction is at least 85%.

9386



(a) (b)

Figure 4: At different confidence thresholds(a) Assignment
accuracy (b) Assignment coverage.

Table 5: Improvement of sparse classes with rule engine

Resolver Group P,R(linearSVM) P,R(ensemble) P,R(+rule engine)
MXX-Support 65.22%,28.99% 72.1%,35.77% 90.9%,86.95%

AppXXX-Support 64.76%,37.22% 75.1%,36.5% 89.61%,85.1%
PrXXX-Support 62.38%,40.65% 71.21%,41.6% 89%,87.34%
XXX-HSS-XXX - - 96.1%,90.1%
XXXha-CRM - - 94.6%,89.5%

This ensures that the selected classifiers operate at least
at human level efficiency. Figure 4 shows the performance
of the best three algorithms at different confidence lev-
els (ranging from 0.1 to 0.9). For dataset C a combination
of linear SVM (confidence≥ 0.5) and MLP (confidence≥
0.6) gave a slightly higher accuracy(89.61%) than that of
LSTM-G(confidence≥0.5) and linear SVM(Xacc=88.38%),
although the individual accuracy was marginally higher for
LSTM-G compared to MLP. For this reason, as also for other
practical considerations like memory and CPU constraints as
well as training time our deployment in production uses an
ensemble of linear SVM and MLP. For the other two datasets
SVM and MLP were clear winners.

Rule Engine Accuracy
Table 5 2 shows precision(P) and recall(R) metrics for some
resolver groups having low accuracy. In each of these cases
we were able to improve the accuracy significantly using
the rule engine. The first three resolver groups are com-
monly confused (derived from confusion matrix) and in-
dividual rules were applied to predict the correct resolver
group. The last two resolver groups belong to IL, so preci-
sion(P)/recall(R) numbers are not available for the ensem-
ble; in these cases accuracy was achieved using rules only.

Performance and scalability
Figures 5 and 6 demonstrate the impact of the different
training optimization techniques on the accuracy of predic-
tion, training time and model size of SVM. These charts are
shown for only the largest dataset viz. dataset C – but the
trend is fairly similar across other datasets as well. The re-
sults can be summarized as follows.

2Resolver Group names anonymized to preserve confidentiality

(a) (b)

Figure 5: Effect of different optimization techniques on (a)
Classification Accuracy (b) Training time

Figure 6: Model size optimization (SVM)

Merging coupled with long tail optimization brings down
the number of resolver groups by about 84%(438 to 72)
along with a 40% reduction in training time, 27% reduc-
tion in model size and 5% improvement in accuracy. This
underscores the effectiveness of long tail approach. We also
found that using the tf-idf approach with bi-grams proved
to be effective across most ML algorithms including SVM.
To optimize on the number of features and model size we
used the tf-idf approach with parameters max df=0.8 and
min df=5. Finally we used chi-square statistic (with best
k features) to reduce the model size further. Overall using
these approaches we were able to achieve a 99% reduction
in model size, 93.5% reduction in training time, and a 13%
increase in accuracy for dataset C while keeping the cov-
erage constant at about 98%. We also achieved significant
speedup in classification time using asynchronous requests
and batching. Figure 7 shows the peak per-day ticket vol-
umes recorded during the entire training period, for each ac-
count. Our system was able to achieve a runtime throughput
of about 286 requests/sec, which is equivalent to about 1500
times the peak hourly volume (696 requests/hr) as shown in
the figure.

Business Impact
Automated assignment of helpdesk tickets results in con-
siderable saving in human effort for large companies hav-
ing clients across geographies. It reduces the time taken for
ticket assignment and at the same time minimizes human er-
ror. This enables the companies to focus more on innovation
and core business needs. Based on our results as summa-

9387



Figure 7: Ticket volumes for a single day

rized in Table 4, we give an estimate of human effort sav-
ing, across all accounts. Assuming that a human agent takes
about 3 min to read and assign each ticket, the net savings (in
min) for an account can be calculated as: Si = T ×Ecov×3.
Summed across all three accounts this gives a total saving of
51629.04 hrs/annum. Till date, our system has served more
than 700,000 tickets in production across the deployed ac-
counts.

Observations
There are three main takeaways from our evaluation results
above. The most important observation is that our assign-
ment engine performs better than all traditional machine-
learning and deep learning algorithms. Secondly, we can see
that simple machine learning algorithms like SVM and MLP
are often better than more computationally expensive deep
learning algorithms in the task of helpdesk email assign-
ment. This result is very significant from a product develop-
ment standpoint as these algorithms are easy to implement,
require minimal computational resources and provide better
performance at runtime. However, it must be noted that CNN
and LSTM accuracy increases with the size of the dataset
and with a very large training data size (more than 5 mil-
lion) CNN and LSTM start outperforming MLP. Thus our
results indicate that an ensemble of SVM and MLP will be
a good trade-off for most practical purposes but if we have a
large enough dataset and infrastructure is not a concern then
the best choices are SVM and CNN-WE/LSTM-G. Finally,
our results [Table 4] clearly indicate the importance of the
rule engine. It not only increases the overall accuracy and
coverage of the system but also ensures business continuity.

6 Conclusion and Future Work
We have proposed email ticket assignment engine that uses
an ensemble of machine learning techniques combined with
a rule engine to perform automated dispatch. Our system
achieves human-level accuracy and has already been de-
ployed for three customers in production. However, there is
still some scope for improvement of the system e.g. adding
support for images and attachments. The system can also
be enhanced to handle concept drift better. This is currently
handled by using a sliding window of recent data as well as
use of the rule engine. However in datasets with high con-
cept drift this method may not give good results over the

long run. We need to come up with an effective active learn-
ing strategy to handle such scenarios.

References
Agarwal, S.; Aggarwal, V.; Akula, A. R.; Dasgupta, G. B.;
and Sridhara, G. 2017. Automatic problem extraction and
analysis from unstructured text in it tickets. IBM Journal of
Research and Development 61(1):41–52.
Agarwal, S.; Sindhgatta, R.; and Sengupta, B. 2012. Smart-
dispatch: Enabling efficient ticket dispatch in an it service
environment. In 18th ACM SIGKDD.
Dasgupta, G.; Nayak, T. K.; Akula, A. R.; Agarwal, S.; and
Nadgowda, S. J. 2014. Towards auto-remediation in services
delivery: Context-based classification of noisy and unstruc-
tured tickets. In 12th ICSOC, volume 8831 of Lecture Notes
in Computer Science. Springer.
Di Lucca, G. 2002. An approach to classify software main-
tenance requests. In 18th IEEE ICSM.
Kadar, C.; Wiesmann, D.; Iria, J.; Husemann, D.; and Lucic,
M. 2011. Automatic classification of change requests for
improved it service quality. In SRII Global Conference.
Kuncheva, L. I. 2004. Combining Pattern Classifiers:
Methods and Algorithms. New York, NY, USA: Wiley-
Interscience.
Mandal, A.; Malhotra, N.; Agarwal, S.; Ray, A.; and Srid-
hara, G. 2018. Cognitive system to achieve human-level
accuracy in automated assignment of helpdesk email tick-
ets. ArXiv e-prints.
Manning, C.; Surdeanu, M.; Bauer, J.; Finkel, J.; Bethard,
S.; and McClosky, D. 2014. The stanford corenlp natural
language processing toolkit. In 52nd ACL (System Demon-
strations).
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; and Dean,
J. 2013. Distributed representations of words and phrases
and their compositionality. In 26th NIPS.
Mitchell, T. M. 1997. Machine Learning. New York, NY,
USA: McGraw-Hill, Inc., 1 edition.
Parvin, H.; Bose, A.; and Van Oyen, M. P. 2009. Priority-
based routing with strict deadlines and server flexibility un-
der uncertainty. In INFORMS WSC 2009.
Pennington, J.; Socher, R.; and Manning, C. D. 2014. Glove:
Global vectors for word representation. In EMNLP 2014.
Potharaju, R.; Jain, N.; and Nita-Rotaru, C. 2013. Juggling
the jigsaw: Towards automated problem inference from net-
work trouble tickets. In 10th USENIX NSDI.
Shao, Q.; Chen, Y.; Tao, S.; Yan, X.; and Anerousis, N.
2008a. Easyticket: A ticket routing recommendation engine
for enterprise problem resolution. In 34th VLDB.
Shao, Q.; Chen, Y.; Tao, S.; Yan, X.; and Anerousis, N.
2008b. Efficient ticket routing by resolution sequence min-
ing. In 14th ACM SIGKDD.
Zeng, C.; Zhou, W.; Li, T.; Shwartz, L.; and Grabarnik, G. Y.
2017. Knowledge guided hierarchical multi-label classifi-
cation over ticket data. IEEE Trans. Network and Service
Management 14(2):246–260.

9388


