
The Thirty-First AAAI Conference on Innovative Applications of Artificial Intelligence (IAAI-19)

Remote Management of Boundary
Protection Devices with Information Restrictions

Aaron Adler
BBN Technologies
10 Moulton Street

Cambridge, MA 02138
aaronadler@alum.mit.edu

Peter Samouelian
BBN Technologies
10 Moulton Street

Cambridge, MA 02138
psamouelian@acm.org

Michael Atighetchi
BBN Technologies
10 Moulton Street

Cambridge, MA 02138
michael.atighetchi@raytheon.com

Yat Fu
Air Force Research Lab
26 Electronic Parkway

Rome, New York 13441
yat.fu@us.af.mil

Abstract

Boundary Protection Devices (BPDs) are used by US Gov-
ernment mission partners to regulate the flow of information
across networks of differing security levels. BPDs provide
several critical functions, including preventing unauthorized
sharing, sanitizing information, and preventing cyber attacks.
Their application in national security and critical infrastruc-
ture environments (e.g., military missions, nuclear power
plants, clean water distribution systems) calls for a compre-
hensive load monitoring system that provides resilience and
scalability, as well as an automated and vendor neutral con-
figuration management system that can efficiently respond to
security threats at machine speed. Their design as one-way
traffic control systems, however, presents challenges for dy-
namic load adaptation techniques that require access to ap-
plication server performance metrics across network bound-
aries. Moreover, the structured review and approval process
that regulates their configuration and use presents two sig-
nificant challenges: (1) Adaptation techniques that alter the
configuration of BPDs must be predictable, understandable,
and pre-approved by administrators, and (2) Software can be
installed on BPDs only after completing a stringent accredita-
tion process. These challenges often lead to manual configu-
ration management practices, which are inefficient or ineffec-
tive in many cases. The Hammerhead prototype, developed as
part of the SHARC project, addresses these challenges using
knowledge representation, a rule-oriented adaptation bundle
format, and an extensible, open-source constraint solver.

DISTRIBUTION A: Approved for public release; distribution unlimited (Case Number 88ABW-
2017-4436).
Work sponsored by AFRL under contract FA8750-16-C-0056; the views and conclusions con-
tained in this document are those of the authors and not AFRL or the U.S. Government.

1 Introduction
BPDs are similar to gateways or firewalls except for key dif-
ferences that improve their security and the security of the
networks they bridge. For example, the types of informa-
tion they are configured to transfer across networks is pre-
configured and heavily scrutinized according to mission re-
quirements. Multi-step and redundant filters perform deep
content inspection, analyzing data across multiple OSI lay-
ers and packets to ensure that the intent of the data transfer
is in compliance with the BPD’s transfer policies.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Another key difference is that some BPDs are designed at
the hardware level to prevent two-way traffic by using dedi-
cated circuits for their sending and receiving network inter-
faces, which are in turn separated by one-way data diodes.
This hardware architecture protects the receiving network
from data exfiltration attacks. The one-way data diodes also
prevent software failures and high load conditions for criti-
cal functions such as data filtering, auditing and logging that
occur on the BPD’s receiving side to signal the sending side.
This is by design as it limits an adversary’s ability to learn
the effectiveness of various attack strategies and, hence, the
target’s security posture.

Modern information systems include load balancers
(LBs) and application clustering to achieve resiliency, high
availability, scalability, and security. In a web-based appli-
cation, for example, LBs provide these benefits by ensuring
Internet-based requests are routed to available servers across
an organization’s server pool. Hence, in their role as traffic
managers between network boundaries, LBs require server
statistics on the receiving network in order to make good
routing decisions. This information includes each server’s
basic online status, CPU utilization, available bandwidth, re-
quest completion rate, and other metrics. BPDs are designed
to prevent all such types of feedback (including the success
or failure of data transfers) to the sending network from their
receiving side.

In practice, some BPDs are equipped with pairs of one-
way data diodes to support separate directional data flows,
as shown in Figure 1 between an open / low security net-
work and a restricted / enclave / higher security network,
in this paper referred to as ‘open’ and ‘restricted.’ Sending
and receiving interfaces may also reside on completely sep-
arate BPDs, potentially across vendor types. Communica-
tion techniques that can leverage these separate directional
dataflows in a secure and coordinated manner would allow
deployments to better leverage commodity LBs to improve
scalability and fault tolerance of BPD deployments.

BPD configuration and administration tasks generally re-
quire physical access to the BPD and potentially multiple ad-
ministrators working separately on each network interface.
While this process provides transparency and effective coun-
termeasures against some types of security threats (e.g., in-
sider threats), it is ineffective or inefficient when responding
to cyber attacks, which operate at machine speed, or sup-

9398



Figure 1: The BPD connects open and restricted networks.

porting ongoing maintenance, such as updating virus defini-
tions across multiple BPDs. A vendor-neutral configuration
management solution that satisfies the unique constraints of
BPDs while leveraging automation would lower the mainte-
nance costs of BPDs as well as improve their security.

A system that provides a comprehensive approach that
efficiently monitors, configures, and allocates BPDs using
transparent and reviewable techniques would significantly
improve the state-of-the-art in their administration and de-
ployment. The Hammerhead prototype, developed on the
SHARC project, addresses these challenges using a combi-
nation of AI components, including: 1) Device and behavior
abstractions (Knowledge Engineering), 2) A rule-oriented,
XML-based adaptation bundle format, and 3) A constraint
solver and planner. These components are combined with
a core Observe-Orient-Decide-Act (OODA) loop architec-
ture and a publish/subscribe messaging bus. The following
sections show how the unique requirements of BPDs are
addressed by these components, beginning with a system
overview.

2 System Overview
Figure 2 shows an overview of a potential Hammerhead de-
ployment. A Hammerhead instance on the open network re-
ceives traffic sensor input on data flows entering the BPD
pool and sends aggregated status information to the Ham-
merhead instance on the restricted network, which is the ad-
ministration or owning instance of the BPD pool. The ag-
gregated information conforms to pre-approved XML data
that, like all data flows, is procesed through a BPD. This
information is key to enabling the reasoning module in the
restricted-side Hammerhead instance, which compares the
received status information to information available on the
restricted side of the BPD pool to detect potential choked
data flow conditions or other anomalies.

The restricted Hammerhead instance may take actions
to address anomalies, including migrating software across
BPD instances or bringing standby instances online to han-
dle traffic spikes. The use of replica sets (multiple BPDs
with identical policies) facilitates the system’s ability to
scale or failover as needed. A policy in this context is the
software and configuration needed to process a type of data
flow (e.g., policies exist for video streaming data flows and
web service data flows). Actions that require configuration
changes to the LBs on the open side are routed to the open-
side Hammerhead instance via a BPD as pre-approved XML
messages. The use of coarse-grained, pre-approved XML
messages to transmit open-side traffic conditions and LB
configuration changes provides an opportunity to securely
apply dynamic load balancing techniques without compro-
mising the policies imposed by the BPDs. Low-level details

Figure 2: Hammerhead system overview

on data flows entering the BPD and BPD health-metrics are
not revealed outside their respective networks. LB routing is
configured using control messages from the restricted Ham-
merhead instance.

The deployment’s topology (i.e., which BPDs are being
monitored, which LBs are in use, and the replica set config-
uration), the specific rules that govern the reasoning process
on the restricted Hammerhead instance, and all the defined
sensors and actuators are described in a rule-oriented XML-
based adaptation bundle (see Section 6). This format sig-
nificantly improves the administrators’ ability to review and
adopt effective and dynamic adaptation techniques in mis-
sion critical BPD deployments.

Moreover, the solution avoids the installation of new soft-
ware on the BPD and the associated re-accreditation pro-
cess. BPD configuration changes can be executed on the
BPD using either the Guard Remote Management Proto-
col (GRMP), an emerging, vendor-neutral standard that al-
lows for secure remote BPD administration or, alterna-
tively, through custom actuators that use the BPD’s native-
management interface. As described later, BPD status infor-
mation (like CPU utilization) can be accessed using a BPD
SNMP (Simple Network Management Protocol) MIB (Man-
agement Information Base). This provides a greater level of
information useful for finding optimal assignments of poli-
cies to BPDs.

3 Architecture
A core aspect of Hammerhead’s architecture is an OODA
loop which processes sensor information from a variety
of sources, orients and decides on a sequence of actions
to take, and then uses a set of actuators to modify the
LB or BPD configuration. The orient and decide por-
tions of this loop are implemented using several AI tech-
niques which are described later. The Observe compo-
nent of the OODA loop is driven by an extensible sensor-
based architecture that includes a packet sensor on the net-
work. In order to measure network traffic, we use TShark
(www.wireshark.org), a terminal based packet analyzer. The
resulting log data produced by TShark is processed by
Logstash (www.logstash.net) and ingested into an Elastic-
search database (www.elastic.co).

Each BPD processes one or more flows. Each flow is a
single route for a specific type of data that is allowed through
the BPD. Hammerhead periodically queries Elasticsearch
for the number of network packets sent to and from each

9399



BPD flow. Since TShark supports extensive packet filtering
capabilities, a dedicated packet monitor can be created for
every BPD flow in a system.

Data from these sensors is fed into a local publish/sub-
scribe message bus as fine-grained events (e.g., the num-
ber of HTTP requests sent to a BPD flow within an inter-
val of time). Multiple subscribers on the bus perform ded-
icated tasks. One such subscriber is responsible for insert-
ing each event into the fact base of a rule engine session
(www.drools.org). One important function the rule engine
serves is event aggregation. Real-time traffic monitoring so-
lutions can generate high volumes of data that must be fil-
tered and summarized (aggregated) in order to focus on the
salient aspects of traffic conditions. Hammerhead filters data
at both the TShark and rule engine level; the latter, how-
ever, is responsible for aggregating fine-grained events on
the status of individual data flows entering or exiting the
BPD device into coarse-grained events on the status of a
replica set. When Hammerhead observes, for example, that
some inbound flows to a replica set are receiving data yet
none of the replica set’s outbound flows are sending data, it
creates a new observation indicating a potential choked traf-
fic condition on the cluster. This can be the result of a bad
filter configuration across the cluster or signs of a cyber at-
tack. Event aggregation creates more readable rules, which
in turn facilitates the BPD review process and ultimately the
trust administrators place on the system.

A second subscriber on the message bus monitors high-
level observations to dispatch messages to the Hammerhead
instance responsible for the message recipient (a deployment
will likely consist of more than two domains so messages
must be routed appropriately). Messages are dispatched by
comparing their target (i.e., which BPD or LB) with a topol-
ogy of the system contained in the adaptation bundle.

Actions are executed by actuators in Hammerhead. An ac-
tuator exists for the GRMP protocol and is responsible for
migrating policies across BPDs, starting and stopping BPDs,
and performing other administrative tasks. Since the proto-
type uses a DNS server as a load balancer, Hammerhead in-
cludes an actuator for adding and removing DNS type A and
service records. This is used for implementing BPD failover
and basic DNS round-robin load balancing. Similar to obser-
vations, actions, triggered by rules on the reasoning Ham-
merhead instance, are placed on the local message bus. A
dedicated subscriber monitors actions on the bus and deter-
mines how to route the action to a Hammerhead instance
based on the topology in the adaptation bundle.

4 Overview of AI Techniques
The following sections describe Hammerhead’s knowledge
engineering, adaptation bundle format, and constraint solver
and planner solution. Collectively these techniques model
the system and identify faults and optimizations while meet-
ing the requirement for human understandability and review.

5 Knowledge Engineering
Hammerhead is designed to work in diverse deployment en-
vironments that may contain a variety of BPDs, LBs, and

sensor capabilities. Data flows may use one or more BPDs
depending on the volume of data and the computational in-
tensity of the required processing. We created a core set of
rules that, once understood by administrators and accredi-
tors, are applicable to different situations. We achieved this
by using knowledge engineering to develop abstractions that
allow the same high level behavior to occur while being ag-
nostic to the source of the sensor data. For example, some
BPDs might support the SNMP protocol, others the GRMP
protocol, and others may require a custom protocol. By mod-
eling the key characteristics of these devices, the high level
rules can be agnostic to the source of the sensor data.

We constructed a hierarchical model (Figure 3) that ab-
stracts away details so that administrators can reason about
devices at a higher level. The lowest level of the model is
the raw sensor data on replicas (copies) of a particular flow.
The next level maps the raw information into observations
about flow instances. Next, the state of a policy on a replica
is captured, and the following layer determines the state of a
replica set. For example, a replica set may have data flowing
on some replicas but not others. At the top level, the obser-
vations are turned into a ticket that represents a problem to
be solved. High level modeling occurs only in the restricted
network.

Figure 3: Overview of the rule abstraction layers in each net-
work.

Hammerhead rules are designed to build upon each other
and form a model of the system state that can be analyzed.
For example, a BPD typically has input and output queues
that surround the actual filtering and processing of data. The
queue depth increases if the BPD cannot keep up with the
rate of incoming data or if the BPD encounters errors. For
example, the BPD is designed to fail closed and will not pro-
cess more data if it cannot write logs to disk (i.e., the disk
is full). An increased queue depth could be ascertained di-
rectly from the BPD using SNMP or indirectly by observing
a change in network flows (data going out of the BPD at a
reduced rate relative to an average across time or to the input
rate). The full state of the system across network boundaries
must be factored into the analysis.

Hammerhead uses tickets to model both the issue and res-
olution steps. A ticket can be created to alert an adminis-
trator, rebalance flows for increased load, or route traffic
around a malfunctioning BPD.

9400



Figure 4: Example of a ticket creation rule chain.

Figure 5: Summary of Adaptation Bundle structure.

Figure 4 shows the observations that culminate in ticket
creation for a set of flows that have incoming data but no
outgoing data. When a ticket includes an action to reroute
traffic, the constraint solver (see Section 7) is used to reas-
sign policies to available BPDs.

6 Adaptation Bundle
To satisfy the requirements for human review and approval,
Hammerhead encapsulates all adaptation rules, actuator and
sensor configuration, and the BPD/LB topology in a single
XML file or “bundle.” The bundle format provides a com-
plete and explicit enumeration of how the system will be-
have. This empowers administrators to review each system
rule in the context of a specific deployment. Each bundle
must be signed by an approving authority before it can be
used. A summary of the bundle structure is shown in Fig-
ure 5. The largest section contains the declarative rules (us-
ing the Drools native rule language) that trigger ticket ac-
tions. The replicas and cell sections describe the BPD pol-
icy configuration and Hammerhead instances. Actuators and
sensors are described in the services section.

A key advantage of the bundle format is that it places re-
strictions on Hammerhead’s input sources (sensors), range
of behavior (rules), and scope (BPD topology). The scope of
an administrator’s approval extends precisely to these com-
ponents. Together with the bundle’s human-readable XML
format, this increased approval scope satisfies understand-
ability and review requirements.

7 Constraint Solver
Mission planners rely upon BPDs for resource intensive
tasks such as full motion video streaming, stateful deep con-
tent inspection, and other complex data filtering. To satisfy

mission objectives, SHARC must determine an optimal as-
signment of the policies that filter data flows to hardware
resources. Planning must take place at both pre- and in-
mission phases of operation. Optimal states are functions
of multiple factors, including hardware specifications and
accreditation status, mission and policy requirements, and
real time resource utilization metrics, such as CPU load and
free memory. An optimal assignment must satisfy multi-
ple objectives, including: (1) Hardware constraints such as
memory, CPU speed, and bandwidth required by a mission’s
policies and (2) Cluster-level requirements, such as con-
currency and fault tolerance. In addition to the Optaplan-
ner constraint-satisfaction engine (www.optaplanner.org),
the scoring function and rule-based planner are the key com-
ponents used to address these constraints.

7.1 Scoring Function
The default scoring function computes a hard and soft score
for each candidate solution. Hard scores are evaluated for
scalar and binary constraints on most resources, whereas soft
scoring is applied to reward cluster-level resiliency charac-
teristics. A hard and soft score of zero indicate that the con-
straints are satisfied, while negative scores indicate that the
constraints are unsatisfied. Hard constraints are used to iden-
tify and discard infeasible solutions, whereas soft constraints
rank feasible solutions.

Scalar constraints on consumable hardware resources
These include, for example, policy, memory, and bandwidth
requirements. Specifically, the total hard score assignment
for consumable resources is:

|bpd|∑
d

|R|∑
r

{
C(r,d) −R(r,d) R(r,d) > C(r,d)

0 R(r,d) ≤ C(r,d)

where |bpd| is the number of boundary protection devices,
|R| is the number of consumable resources, and C(r,d) is the
capacity for resource r on device d. Rr,d is simply the sum
of the values for resource r on all policies assigned to device
d in the current solution:

Rr,d =

|Pd|∑
p

pr

where |Pd| is the number of policies assigned to device d,
and pr is the policy’s requirement for resource r.

Scalar constraints on non-consumable resources Ex-
amples are CPU clock speed and number of cores. Such
hardware resources are viewed, for the purposes of simplifi-
cation, as resources that are available equally to all policies
assigned to the device; i.e., a policy’s CPU speed require-
ment does not reduce the available CPU speed for other poli-
cies. Though this is a simplification, other runtime factors,
like CPU load factor, provide a more accurate measure of
the cumulative impact policies have on resources that are
mapped as non-consumable.

Discrete resource constraints Examples include a pol-
icy’s requirements for isolation or a device’s broad capabil-
ities (e.g., to support a type of content). These are imple-
mented as the binary hard score constraints (0,−1).

9401



Cluster-level constraints These constraints are designed
to reward high-level resiliency characteristics, including
even workload balancing and concurrency. In order to cre-
ate policy deployments that are fault tolerant and capable
of satisfying target workloads, the scoring function must re-
ward configurations that evenly distribute load and replica-
tion at both the pre-mission planning stage and at runtime.
Pre-mission assignments consider a policy’s expected load
on a BPD based on its memory, bandwidth, and CPU re-
quirements using a simple multiplicative model:

pload =

|F |∏
f

p
Wf

f

Each policy feature pf is weighted appropriately using
Wf under experimentation. The multiplicative model does
not require feature scaling; however, in practice, it is conve-
nient to apply a min-max normalization over a restricted in-
teger range to avoid data overflow errors, which easily occur
even for 64-bit integers when using a mulitplicative scor-
ing function. Hammerhead uses a min-max normalization
function that projects each feature’s zero-based, absolute
range to 0 − 100. For example, processor speed is mapped
from 0 − 5000 Mhz to 0 − 100 (the source range’s mini-
mum and maximum values are not derived from the current
observation set). This preserves proportionality and data-
independence (e.g., the optimizer does not reorder policy
workload assessments as new policies are added or existing
policies are removed). Moreover, all values are converted to
integers to avoid floating-point arithmetic errors.

The scoring function computes the workload soft score
for each candidate assignment of policies to BPDs presented
by the heuristic-search engine as follows:

softload = −
[ |bpd|∑

d

|Pd|∑
p

((pload − loadavg)
2)
]

where loadavg is computed as:

loadavg =
1

|bpd|

|bpd|∑
d

|Pd|∑
p

pload

At runtime, the scoring function switches to using runtime
factors reported by the SNMP agent, such as load factor and
free memory. (Hammerhead currently uses load factor.)

Scoring for reliability and concurrency are handled us-
ing similar non-linear models as shown above. Concurrency
may be expressed at a number of granularity levels, from
ethernet packets to application level messages or active ses-
sions. Excessive reliability and concurrency is penalized us-
ing a squared variance as shown above for softload, reward-
ing solutions which are efficient (i.e., those that minimize
the level of resources used to achieve a target level for a con-
straint). One problem, however, with the above approaches
is that the constraint formulas create symmetric regions of
penalty and reward around their respective targets, which
fails to capture the concept of minimum target values. This
is addressed by modifying the formulas to include a negative
skew factor that penalizes deficits (e.g., in concurrency and
reliability) more than surpluses.

7.2 Rule-Based Planner
Once the CSP engine produces an optimal state, a sequence
of steps is needed to transform the deployment environment.
This is especially critical for in-mission planning since the
CSP engine may request that a policy migrate from an over-
provisioned device to a less utilized device. Policies with
data in their queues or live sessions must be quiesced in an
orderly fashion to prevent data loss or disconnected clients.

Hammerhead approaches the planning phase through the
use of a rule-based implementation of a goal tree. The
Drools working memory is prepared with an initial set of
goals; e.g., Deploy Policy A to Device 1. Additional declara-
tive rules decompose this goal into sub-goals, which are in-
serted into working memory recursively until all goal paths
resolve to actions.

8 Implementation
The Hammerhead prototype is built using Java as a collec-
tion of web services and databases. Core components are
implemented within a single Tomcat web service with dedi-
cated endpoints for the ticketing system (to open and update
tickets), bundle registry system (to load adaptation bundles
from the database), SNMP management service (to register
for notifications sent by BPD SNMP agents), and an Elastic-
search service (for retrieving traffic packets and their sizes).
Each Hammerhead instance also contains a Node Agent,
which is an embedded web service for communicating with
other Hammerhead instances. A PostgreSQL database is
used for storing adaptation bundles and tickets.

The constraint solver leverages the open-source Opta-
planner project, which provides a clean separation between
search heuristics, planning model, and scoring functions.
Clients implement the latter two requirements as well as
the detailed configuration and preferences for the heuris-
tics. The functionality is encapsulated in a Planner module
in Hammerhead. This includes a planner-specific model of
the problem space, which includes 11 discrete and continu-
ous attributes over hard and soft constraints. A future task,
however, is to integrate the constraint solver into the adapta-
tion bundle.

9 Evaluation
To verify system operation and response times for Hammer-
head’s core components, we created a continuous simulator
in the context of a Blue Force Tracker system that processes
location reports from two aircraft. As each BPD receives an
aircraft location report, it forwards the report to a receiver
that shows the aircraft’s current location on a map. At each
1 second timeslice, the system triggers Hammerhead’s core
reasoning engine, which queries the Elasticsearch database
to retrieve traffic information as low-level events and in-
serts the events into the working memory of the rule engine,
which performs event aggregation and potentially triggers
higher-level rules to adapt the system.

Traffic sent to the BPD is generated using simulated
clients on separate threads that each submit an XML-based
location report every 100 ms to a simulated BPD. The simu-
lated BPD Java class models the domain, including security

9402



policies, flows (with separate inbound and outbound queues)
and filters. A notional filter is used that drops messages at
regular configured intervals, accepting the remaining mes-
sages. A DNS daemon is used as a load-balancer to resolve
BPD host names to available endpoints.

We can perturb the system by forcing a BPD device to
drop all or a significant number of incoming location reports,
starving the receiver of data. This effectively simulates a bad
filter configuration. We can also introduce firewall rules that
prevent the BPD from reaching its receiving network inter-
face. This results in a growing outbound message queue on
the flow, simulating a blocked flow.

Though the sending clients and the Hammerhead in-
stances run in a single virtual machine, each communica-
tion endpoint is allocated its own network interface and
JVM process inside separate Docker containers. This logi-
cal topology improves the fidelity of the simulation at the
configuration level (i.e., we can configure TShark and other
services as if the endpoints were physically separated).

The simulation shows the correct operation of the system
under both conditions above, redirecting inbound flows to
healthy BPDs in the pool. We use the simulator to gauge
the feasibility of the core components’ ability to monitor
streaming network events, perform aggregation and reason-
ing, and trigger actuation, all within acceptable thresholds.
The simulations show the feasibility of these components to
respond within acceptable (< 15 seconds) response times for
stream-oriented location data.

We evaluated the constraint solver using two techniques:
Test based and simulation based evaluation. Test based eval-
uation focused on the initial assignment of policies to BPDs
to ensure that all constraints were satisfied. The tests were
limited to three BPDs and three policies. They produced ex-
pected results within 5 seconds on average.

The constraint solver was also verified using a discrete
event simulator and workload trace from parts of the Google
cluster management system (github.com/google/cluster-
data), which provides data from a 12.5K-machine cell over a
month long period in May 2011. The trace files provide sev-
eral metrics that are also supported by the SNMP MIB (for
which our BPD simulators include a compliant SNMP V3
agent). These metrics include sampled CPU usage across 5
minute averages, which was the focus of our experiments.
Future experiments will investigate correlated free memory
and other metrics. Each 1-second tick of the simulator pro-
vided a new CPU average to the constraint solver. We per-
turbed the baseline data using linear transformations to in-
vestigate the system behavior under different load averages
and standard deviations. When the CPU load factor was not
evenly balanced, the planner migrated a policy off the over-
loaded BPD onto a less busy device. One metric that will be
explored in future work is a measure (penalty) for excessive
policy migration (volatility).

10 Related Work
Vaquero, et al. survey several scalability solutions that feed
data from sensors to a rule-based decision making mod-
ule, which in turn evaluates network and server conditions,

potentially scaling the environment through actuators (Va-
quero, Rodero-Merino, and Buyya 2011). However, many
existing systems limit scaling rules to individual VMs, ver-
sus supporting coordinated changes across multiple VMs
and LBs. Another limitation is the solution insufficiently
abstracts underlying infrastructure details, requiring service
providers to maintain detailed VM configuration details.
The most comprehensive approaches, however, like Clau-
dia, provide a more flexible, abstracted solution that focuses
on the application (Rodero-Merino et al. 2010). Hammer-
head fits in this space, abstracting scalability to the data flow
level and presenting a comprehensive sensor-control frame-
work that coordinates changes across multiple servers and
LBs. However, although Claudia includes some “smart scal-
ing” rules, it lacks a general constraint satisfaction engine.
Constraint-based solutions do exist (Jayasinghe et al. 2011),
however their approach is specific to fixed types of structural
constraints applicable to Infrastructure as a Service (IaaS)
data centers.

Our contribution lies in the combination of techniques
to bring automation to and increase the response speed of
BPDs where information exchanges are restricted and ad-
ministrators must understand and approve the automation
and have run time visibility into the system’s behavior.

11 Conclusion
The Hammerhead prototype leverages AI techniques –
knowledge engineering, a rule-based system, and a con-
straint solver – to provide a predictable, understandable, and
flexible automation solution to greatly improve the relia-
bility and adaptivity of BPDs. As the commercial vendors
move toward adopting the technologies in the Hammerhead
prototype, the security and reliability of the BPDs will in-
crease thus increasing the security and reliability of govern-
ment networks allowing authorized sharing of information
while preventing unauthorized sharing and attacks.

References
Jayasinghe, D.; Pu, C.; Eilam, T.; Steinder, M.; Whalley,
I.; and Snible, E. C. 2011. Improving performance and
availability of services hosted on iaas clouds with structural
constraint-aware virtual machine placement. In Jacobsen,
H.-A.; Wang, Y.; and Hung, P., eds., IEEE SCC, 72–79.
IEEE Computer Society.
Rodero-Merino, L.; Vaquero, L. M.; Gil, V.; Galán, F.;
Fontán, J.; Montero, R. S.; and Llorente, I. M. 2010. From
infrastructure delivery to service management in clouds. Fu-
ture Generation Computer Systems 26(8):1226–1240.
Vaquero, L. M.; Rodero-Merino, L.; and Buyya, R. 2011.
Dynamically scaling applications in the cloud. SIGCOMM
Comput. Commun. Rev. 41(1):45–52.

9403


