
The Thirty-First AAAI Conference on Innovative Applications of Artificial Intelligence (IAAI-19)

Probabilistic-Logic Bots for Efficient Evaluation
of Business Rules Using Conversational Interfaces

Joseph Bockhorst,1 Devin Conathan,1 Glenn M Fung1

1American Family Insurance
jbockhor@amfam.com, dconathan@amfam.com, gfung@amfam.com

Abstract

We present an approach for designing conversational inter-
faces (chatbots) that users interact with to determine whether
or not a business rule applies in a context possessing uncer-
tainty (from the point of view of the chatbot) as to the value
of input facts. Our approach relies on Bayesian network mod-
els that bring together a business rule’s logical, determinis-
tic aspects with its probabilistic components in a common
framework. Our probabilistic-logic bots (PL-bots) evaluate
business rules by iteratively prompting users to provide the
values of unknown facts. The order facts are solicited is dy-
namic, depends on known facts, and is chosen using mutual
information as a heuristic so as to minimize the number of in-
teractions with the user. We have created a web-based content
creation and editing tool that quickly enables subject matter
experts to create and validate PL-bots with minimal training
and without requiring a deep understanding of logic or prob-
ability. To date, domain experts at a well-known insurance
company have successfully created and deployed over 80 PL-
bots to help insurance agents determine customer eligibility
for policy discounts and endorsements.

1 Introduction
Employees, agents, customers and other interested parties
of many businesses often need to determine whether or not a
business rule or guideline applies in a given context. For in-
stance, a homeowners insurance policy holder might wish to
determine if their new diamond ring is covered in the case of
theft, and if not what endorsement they need to add, while an
insurance agent might want to learn if a one of their clients
qualifies for a certain discount.

Although the customer or employee may have access to
web sites, policy contracts or other documentation describ-
ing the business rule, such sources are often difficult to find.
Moreover, even if documentation is located, the rule may
require high cognitive load to understand or be outright in-
comprehensible by the seeker due to jargon, ambiguity or
inherent complexity. This leads to an increased burden on
corporate call centers as confused and frustrated customers
or employees seek an expert for help.

Conversational interfaces, chatbots, and related intelli-
gent user interfaces are promising emerging technologies

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that have the potential for addressing many of these con-
cerns (Zamora 2017; Perez and Pascual 2011). A successful
intelligent virtual assistant would interact with users to un-
derstand their questions or concerns. After it has determined
that the user wants to know whether a certain business rule
applies, it would do so by asking the user the fewest number
of questions. Furthermore, the virtual agent would be intel-
ligent enough to allow the user to communicate in natural
language.

This paper reports on efforts we have made toward cre-
ating efficient and intelligent conversational interfaces. We
present an approach for creating intelligent virtual agents,
which we call probabilistic-logic bots (PL-bots), that em-
power users to quickly evaluate complex business rules by
minimizing the number of questions the bot asks of the user.
We have deployed PL-bots as part of a conversational agent
that aims to assist insurance agents in answering questions
about eligibility for insurance coverage discounts and en-
dorsements for new and existing customers. We have also
designed and deployed tools that allow domain experts, who
in general have non-analytical backgrounds, to quickly cre-
ate, edit and manage PL-bots with little training.

Our tools allow users to publish stateless APIs to be con-
sumed by stateful chatbot applications. The PL-bots are im-
plemented as look-up functions: the user or chatbot appli-
cation supplies the ID of the business rule being evaluated
and the current evidence or set of known facts. The PL-bot
either responds with the optimal fact to ask next or the re-
sulting value of the business rule (i.e., true or false) if the
supplied evidence is sufficient to evaluate it.

The key technology underlying PL-bots are Bayesian net-
works (BNs), a member of the class of probabilistic graphi-
cal models (see, for example, the Koller and Friedman text-
book (Koller and Friedman 2009)). The BNs used by PL-
bots encode the logical expressions for the business rule de-
terministically and the uncertainty over input facts proba-
bilistically.

2 Preliminaries
2.1 Bayesian Networks
A Bayesian network is way of representing the joint prob-
ability distribution of a set of random variables that ex-
ploits the conditional independence relationships among the

9422

X1 X2 . . . Xn p(Y = 0) p(Y = 1)
0 0 . . . 0 1.0 0.0
0 0 . . . 1 1.0 0.0

. . . 1.0 0.0
1 1 . . . 1 0.0 1.0

Table 1: Deterministic CPT for AND node Y = X1 ∧X2 ∧
. . . Xn

variables, often greatly reducing the number of parameters
needed to represent the full joint probability distribution,
while providing a powerful and natural way to represent the
dependencies that do exist.

A Bayes net consists of two components: a qualitative one
(the structure) in the form of a directed acyclic graph whose
nodes correspond to the random variables and a quantitative
component consisting of a set of conditional probability dis-
tributions. The structure of the graph encodes a set of condi-
tional independence assertions through the absence of arcs
between nodes. In particular, a node is conditionally inde-
pendent of all non-parent ancestors given its parents. These
assertions allow the full joint probability distribution to be
compactly represented by storing a conditional probability
distribution at each node conditioned on its parents, as can
be readily seen through a rewriting of the chain rule.

Pr(X1, . . . , Xn) =

n∏
i

Pr(Xi|X1, . . . , Xi−1)

=

n∏
i

Pr(Xi|parents(Xi)

Here the Xi’s are the random variables and parents(Xi)
is the parent set for Xi. The last line exploits the conditional
independence relationships and the ordering from 1 to n is
such that a node is preceded by all of its parents.

We use conditional probability tables (CPTs) to represent
the conditional distributions (at present PL-bots support only
discrete-valued random variables). Rows of the CPT for X
give conditional distributions of X given a joint setting (or
configuration) of X’s parents, and the columns correspond
to values of X . Nodes whose value is given by a determinis-
tic function of its parents have deterministic CPTs in which
each row has a single probability of 1 with the rest of the
values in that row equal to 0. We refer to nodes with deter-
ministic CPTs as deterministic nodes.

2.2 Propositional Logic in Bayes nets
It is straightforward to represent propositional logic expres-
sions in Bayesian networks using Boolean variables with de-
terministic CPTs whose values come from the truth table
of the expression. Let Y,X1, . . . , Xn be Boolean variables
where

Y = f(X1, . . . , Xn)

is defined by Boolean function f(). We can represent
Y in a Bayes net by a deterministic node with parents
{X1, . . . , Xn} and CPT where p(Y = 1|X1, . . . , Xn) =

f(X1, . . . , Xn). Table 1, for example, shows a CPT for a
conjunction. We use the coding of 0 for false and 1 for true.

A downside of this direct CPT encoding of logical nodes
is that since the size required grows exponentially with n;
it is not viable for moderately sized n. Fortunately, some
important functions including the disjunction and conjunc-
tion permit a more compact representation using intermedi-
ate variables which we describe in Section 4.1.

3 Probabilistic-Logic Bots
In this section we describe how we construct Bayesian net-
works to represent business rules and how we use them to
drive a conversational interface.

3.1 BNs for PL-bots
A PL-bot Bayes net (PL-BN) has nodes
(Fc ∪ Fb ∪ Fd ∪ C ∪ {T}) where Fc, Fb and Fd are
sets of nodes for categorical, Boolean and derived facts
respectively, C is the set of logical clause nodes and T is
the target node.

The categorical facts and Boolean facts (the probabilis-
tic nodes in PL-BNs) constitute the set of variables PL-bots
prompt users to provide values for. For this reason we some-
times refer to Fc ∪ Fb as input facts. For simplicity of expo-
sition we assume all input facts are initially unobserved1.

Derived facts are binary deterministic nodes that provide
one-hot encodings of the categorical nodes where each cat-
egorical node is parent of the derived facts for each value in
its domain. The clause nodes and the target node are logical
nodes which are either a disjunction (OR node) or a con-
junction (AND node) of its parents. Each clause node and
the target node has two or more binary-valued parents from
Fb ∪ Fd ∪ C.

We complete our description of PL-BNs by specifying
how we set the conditional distributions. The logical nodes
(C∪{T}) use the methods for deterministic CPTs described
above and in Table 1 (see also Section 4.1 for more efficient
representations for nodes with a large number of parents).
For probabilistic nodes, which for PL-BNs do not have par-
ents, we only need specify prior probabilities.

One of our design guidelines is to enable users to simply
and quickly create PL-bots by employing sensible defaults
when possible. We only require designers to specify input
facts, clauses and the target rule to create a functioning PL-
bot. Input facts are initialized to uniform prior distributions.
That this simple approach has yielded surprisingly good re-
sults thus far may be explained in part by the fact that a ”per-
fect” PL-BN is one that is correct regarding the next fact to
ask about. Perfect probability estimates are not necessary.

However, sometimes it is clear that the default PL-bot so-
licits facts non-optimally. A common example is when res-
idents of a low-population region are ineligible for a dis-
count. In theory, the business rule could be evaluated with
a single query about where the user is located; however, in
reality this would rarely result in resolving the rule due to
the low population. With uniform priors such a fact has a

1It is a straightforward extension to permit PL-bots to begin
with non-empty evidence

9423

Figure 1: PL-BN structure for the jewelry item endorsement
example described in Section 3.1. Endorsement eligibility
(target T) depends on facts for the item’s value, represented
by categorical fact V with values lo, med and hi, whether
the home has a burglar alarm (A), whether all gemstones are
fixed to a base (F), and whether the jewelry is stored in a
permanent locked safe (S).

significantly inflated mutual information with the target, and
the default PL-bot will often ask it at the first opportunity.
By manually setting the input fact priors, these non-optimal
situations can avoided.

Example Consider the following description of a fictional
business rule for determining whether an endorsement pro-
viding coverage for a jewelry item can be added to a home-
owners policy:

A jewelry item endorsement may be added to a home-
owners policy to cover an individual jewelry item if it
is stored in a locked safe that resides within the insured
building. Otherwise the endorsement is allowed if ei-
ther of the following hold: i) the item has low value
and either the insured building has a burglar alarm or
all gemstones are fixed to a stable body, or ii) the item
has medium value, the insured building has a burglar
alarm and all gemstones are fixed to a stable body.

We can formalize this business rule with

T = S ∨ ([V = lo] ∧ (A ∧ F)) ∨ ([V = med] ∧ (A ∨ F))

where T is the target, V is the value of the item, A indi-
cates if there is a burglar alarm, F indicates if all gemstones
are fixed and S indicates if the jewelry item is stored in an
appropriate locked safe.

To aid in the implementation and curation of busi-
ness rules (which sometimes can involve complex Boolean
logic), we created an intuitive GUI that allows domain ex-
perts to create facts, intermediate rules (which correspond to
clause nodes in the BN), and target business rules. Figure 1
shows the resulting PL-BN structure using our tool for the
jewelry item endorsement example.

3.2 Conversational Interface
In this section we describe how PL-bots evaluate business
rules. Algorithm 1 contains PL-bot pseudocode used after it
has determined which business rule the user is interested in
evaluating. Discussion of methods for determining the ap-
plicable business rule, for example natural language classifi-
cation of user utterances, are beyond the scope of this paper.

In addition to a Bayes net, each modeled business rule has
a set of conversational strings. A PL-bot presents the wel-
come string at the beginning of a conversation to evaluate
that rule. When it asks the user for the value of an input fact
it displays the prompt string for the corresponding fact. And
when it has determined the value of the rule it displays either
the eligible or ineligible string as appropriate.

PL-bots evaluate a business rule by soliciting the values of
facts from users, using the (conditional) mutual information
between input facts and the target as a heuristic to select the
next fact to ask about at each step. The conditional mutual
information between X and Y given evidence ~e is

I~e(X,Y) =
∑
x,y

Pr(x, y|~e) log2
(

Pr(x, y|~e)
Pr(x|~e) Pr(y|~e)

)
.

I~e(X,Y) is an information theoretic concept that measures
the degree to which learning the value ofX when we already
know ~e reduces our uncertainty in Y (and vice-versa as it is
symmetric).

Algorithm 1: Pseudo-code of PL-bot for evaluating a busi-
ness rule.

function BUSINESSRULEBOT(G, s, ε)
G: PL-BN for the business rule
s: conversation strings for the business rule
ε: termination threshold

T ← target of G
. Initialize unobserved input facts and evidence

U ← categorical and Boolean facts of G
~e← {}

SAY(s.welcome)
while mint∈{0,1} (1− p(T = t|~e)) > ε do

Fnext ← argmaxF∈U MUTINFO~e(F, T)
SAY(s.prompt for Fnext)
utterance← USER INPUT()
value← EXTRACTVALUE(Fnext, utterance)
append Fnext = value to ~e
U ← U − Fnext

end while
if p(T = 1|~e) > 1− ε then

SAY(s.eligible)
return true

else
SAY(s.ineligible)
return false

end if
end function

A PL-bot begins with an empty evidence vector ~e. The

9424

Figure 2: Pre-computed decision tree used to validate model
logic and as cache for responsive bot.

categorical and Boolean facts comprise the initial set of un-
observed facts. It proceeds by iterating the following steps
until the uncertainty in the value of the target falls below ε:
1. Calculate the mutual information between each unob-

served fact and the target conditioned on the current evi-
dence. The fact with the largest mutual information is the
next fact

2. Solicit the value of next fact the from the user, add it to
the evidence and remove next fact from the unobserved
facts.

4 Practical Matters
In this section we report on our solutions to challenges en-
countered deploying PL-bots. We focus on general issues
rather than those peculiar to our environment

4.1 Sluggish chatbots due to slow inference
The time for determining the next fact should be on the order
of at most a few hundred milliseconds. Longer delays lead
to sluggish interactions and a poor user experience. The cal-
culation involves a probabilistic inference query to compute
Pr(Fi, T |~e) for each unobserved fact Fi. We have discov-
ered that for many business rules the time needed for this cal-
culation is not acceptable for on-line inference. Therefore,
prior to putting a model into production, we pre-compute
its decision tree. Figure 2 shows an example of the pre-
computed tree for the jewelry example. Besides supporting
a more responsive conversation the decision tree is used by
bot administrators to visually validate the logic.

However, for some more complicated rules the sheer num-
ber of inferences necessary to directly compute the tree
make it intractable even in the off-line scenario. It has been
long known that exact inference for general BNs is NP-hard
in the treewidth of the underlying graph (Cooper 1990). Al-
though efficient inference methods exist for some restricted

Figure 3: Tree representation for a disjunction of 7 vari-
ables Y = X1 ∨ X2 · · · ∨ X7 using intermediate variables
Z1, Z2, Z3 and Z4 corresponding to the parenthesiziation
Y = [(X1 ∨X2) ∨ (X3 ∨X4)] ∨ [X5 ∨X6 ∨X7]. Rep-
resenting Pr(Y |X1, . . . , X7) directly with a CPT requires
28 = 256 values while the tree representation requires only
48 total values in the CPTs of the intermediate nodes and
Y . Also, this representation integrates efficiently with ex-
act inference methods such as variable elimination without
causing blowup in space or time requirements.

classes of network structures such as chains and trees, PL-
BNs is not one of these cases. It is straightforward to show
that inference in PL-BNs is NP-hard by reduction to 3-SAT.
Thus, we are freed from investigations toward a general
polynomial time solutions.

Tree representation of logical nodes Here we report on
two heuristic methods that have enabled us to create highly
responsive PL-bots without sacrificing exact inference. Con-
ditional distributions of logical nodes Y = f(X1, . . . , Xn)
for some Boolean functions may be more compactly rep-
resented than the 2n values required by the CPT represen-
tations described in Section 2.22. Here we describe a rep-
resentation of conditional distributions for disjunctions that,
through introduction of intermediate variables, requires only
O(n) space and integrates efficiently with exact probabilis-
tic inference methods for Bayesian networks. An analogous
procedure exists for conjunctions.

Consider the disjunction of k variables:

Y = f∨(X1, ..., Xk) = X1 ∨ . . . ∨Xk.

Exploiting the associativity of disjunction we introduce in-
termediate variables Z1 and Z2

Z1 = f∨(X1, . . . , Xk/2)

Z2 = f∨(Xk/2+1, . . . , Xn)

and express Y as

Y = f∨(Z1, Z2)

2While it is possible to represent the Pr(Y |X1, . . . , Xn) with
only the logical rule and dispense with CPTs entirely, this only re-
duces the static model size. The operations of inference – when the
space demands are greatest – typically realize the tabular represen-
tations or reduced forms of it.

9425

X1 X2 p(Y = 0) p(Y = 1) p(Y = 2)
0 0 1.0 0.0 0.0
0 1 0.0 1.0 0.0
0 2 0.0 0.0 1.0
1 0 0.0 1.0 0.0
1 1 0.0 1.0 0.0
1 2 0.0 1.0 0.0
2 0 0.0 0.0 1.0
2 1 0.0 1.0 0.0
2 2 0.0 0.0 1.0

Table 2: 3-state logic CPT for Y = X1 ∨X2 where 0, 1 and
2 represent false, true and unsure respectively.

Figure 4: Results from a selection of 5 eligibility rules: live-
stock coverage (LC), defensive driver (DD), septic backup
(SB), good student (GS), and personal property (PP). Here
we show the range, median and inner quartiles of the number
of queries necessary to evaluate the rule for 1000 simulated
users for each querying strategy.

reducing space requirements from O(2k) to O(2
k
2). Repeat-

ing this process by recursively splitting intermediate vari-
ables with more than three inputs yields a tree representation
for Y containing O(n) intermediate nodes, each of which
(along with Y) have two or three parents. Thus, the aggre-
gate size of all CPTs is also O(n). Figure 3 shows an exam-
ple of using this process with a disjunction over 7 variables.

Inference by cases In some PL-BNs inference is greatly
simplified when a certain conditional fact S, which we call
the split node, is known. For these models it may be advan-
tageous to calculate the posterior distribution between unob-
served input fact Ui and T Pr(Ui, T |~e) (needed to compute
the mutual information) by marginalizing over S:

Pr(Ui, T |~e) =
∑
s

Pr(s|~e) Pr(Ui, T |s,~e).

The key idea is to trade one complex primary inference
query for a number of simpler secondary queries.

We have found this approach to be especially effective
for models in which the business rule is a disjunction of

Figure 5: The result of our simulations aggregated by the
number of facts involved in the business rule. As expected,
the effectiveness of the strategy depends heavily on the com-
plexity of the business rule.

different rules according to the value of a categorical fact
that takes a large number of values. For example, because
of state-to-state variation in insurance regulatory rules, our
organization’s defensive driver discount has slightly differ-
ent eligibility requirements depending on the driver’s state
of residency. Correspondingly, the PL-bot for this discount
has a clause node for each for each state that is true only
when the insured driver lives in that state and the other re-
quirements of the rule are met. Each of the state-level clause
nodes is a parent of the target node (an OR node).

We have used this strategy successfully with multiple
business rules to turn intractable inference problems into
ones that run in just a few seconds.

This approach is similar to other conditioning methods
for inference in graphical models, such as cutset condi-
tioning (Pearl 1988) and recursive conditioning (Darwiche
2001). These methods search for nodes to condition on
(analogous to our split variable) that will yield simpler sec-
ondary inference tasks through analysis of the graph. Our
approach, on the other hand, uses both the graph structure
as well as simplifications due to determined nodes that arise
not from the structure but the form of the conditional dis-
tributions (frequently in deterministic nodes). A determined
node is one that while not observed directly is known with
certainty given the observed input facts. For example, a con-
junctive clause node is determined when any of its inputs is
0. Importantly, the non-probabilistic determined nodes for a
given set of evidence can be computed quickly in PL-BNs
by cycling through nodes in topological order.

4.2 User uncertainty of input fact values
A user may sometimes be unable to provide the value of
an input fact, but there may be other facts that if known al-
low the business rule to be evaluated. It is straightforward to
accommodate uncertain users with a 3-valued logic where
Boolean variables take values from {false, true, unsure}.
The CPT for 3-state logic extends from its truth table in the

9426

obvious way. See Table 2. Note that if any of the parents of
an OR or AND node are 3-valued, that node will be 3-valued
as well.

5 Experiments
Domain experts used the creation tool described in Section
3.1 to create more than 80 business rules for determining
eligibility for discounts or endorsements. The rules comprise
a wide range in complexity; some just have a few facts and
other more complex rules have more than 20 facts and many
intermediate clauses.

For each rule, we randomly created 1000 “users”. In this
context a user is simply a set of facts drawn from the distri-
bution according to the prior indicated by the creator through
our tool. An example user for the the jewelry item endorse-
ment from Section 3.1 might be:

{V = lo, A = True, F = False, S = True}

Which represents a user who has a low value item without
fixed gemstones, stored in a safe with a burglar alarm. For
each user, we then simulated a “conversation” using both the
PL-Bot and random strategies. The strategy chooses a vari-
able to query, the user supplies the value of that variable,
and the process stops when the target business rule can be
evaluated. For each user and strategy, we record the num-
ber of queries necessary to determine the target rule. We
show some detailed statistics for 5 individual rules in Figure
4. The personal property (PP) model is the most complex
model with 24 facts. Note that the random strategy some-
times had to query the value of every one of these facts,
whereas the PL-Bot never had to query more than 10.

Unsurprisingly, we found that the complexity of the rule
and number of facts affected the performance of the PL-Bot
strategy. This is intuitive; if fewer facts are involved, the ran-
dom strategy is more likely to select the same variable to be
queried as the PL-Bot strategy. Also, the simplest rules with
just a few facts can usually be evaluated with 1 or 2 queries
either way. However, we see a remarkable difference with
the more complex rules. In Figure 5 we plot the average
number of queries versus the number of facts for all of our
business rules.

6 Conclusion
We have described an approach to building intelligent virtual
assistants that help users determine whether or not business
rules apply in a given context. Our approach, probabilistic-
logic bots (PL-bots), employs Bayesian networks to repre-
sent the deterministic and probabilistic aspects of business
rules in a single model. The deterministic part comes from
the business rule’s logic while the probabilistic part comes
from the uncertainty as to the value of input facts upon
which the rule depends.

A PL-bot evaluates a business rule through interactions
with a user where in each interaction the bot asks the user
for the value of an unknown input fact, using mutual infor-
mation as a heuristic to minimize the number of questions
asked.

Subject matter experts create PL-bots using a content cre-
ation tool that does not require any advanced understand-
ing of Bayes nets, logic or probabilistic models. To date
our organization has successfully created and deployed more
than 80 PL-bots to assist insurance agents and other internal
users.

References
Cooper, G. F. 1990. The computational complexity of prob-
abilistic inference using bayesian belief networks. Artificial
intelligence 42(2-3):393–405.
Darwiche, A. 2001. Recursive conditioning. Artificial Intel-
ligence 126(1-2):5–41.
Koller, D., and Friedman, N. 2009. Probabilistic graphical
models: principles and techniques. MIT press.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan Kaufmann.
Perez, D., and Pascual, I. 2011. Conversational Agents
and Natural Language Interaction: Techniques and Effec-
tive Practices. IGI Publishing.
Zamora, J. 2017. Rise of the chatbots: Finding a place for
artificial intelligence in India and US. In Proceedings of
the 22nd International Conference on Intelligent User Inter-
faces Companion, IUI ’17 Companion, 109–112.

9427

