
The Thirty-First AAAI Conference on Innovative Applications of Artificial Intelligence (IAAI-19)

Anomaly Detection Using Autoencoders in High Performance Computing Systems

Andrea Borghesi,1 Andrea Bartolini,1 Michele Lombardi,2 Michela Milano,2 Luca Benini3

1DEI, University of Bologna, 2DISI, University of Bologna, 3Integrated Systems Laboratory, ETHZ
andrea.borghesi3@unibo.it, a.bartolini@unibo.it, michele.lombardi2@unibo.it, michela.milano@unibo.it, lbenini@iis.ee.ethz.ch

Abstract

Anomaly detection in supercomputers is a very difficult prob-
lem due to the big scale of the systems and the high num-
ber of components. The current state of the art for automated
anomaly detection employs Machine Learning methods or
statistical regression models in a supervised fashion, mean-
ing that the detection tool is trained to distinguish among a
fixed set of behaviour classes (healthy and unhealthy states).
We propose a novel approach for anomaly detection in High
Performance Computing systems based on a Machine (Deep)
Learning technique, namely a type of neural network called
autoencoder. The key idea is to train a set of autoencoders
to learn the normal (healthy) behaviour of the supercom-
puter nodes and, after training, use them to identify abnormal
conditions. This is different from previous approaches which
where based on learning the abnormal condition, for which
there are much smaller datasets (since it is very hard to iden-
tify them to begin with).
We test our approach on a real supercomputer equipped with
a fine-grained, scalable monitoring infrastructure that can
provide large amount of data to characterize the system be-
haviour. The results are extremely promising: after the train-
ing phase to learn the normal system behaviour, our method is
capable of detecting anomalies that have never been seen be-
fore with a very good accuracy (values ranging between 88%
and 96%).

Introduction
High Performance Computing (HPC) systems are complex
machines with many components that must operate concur-
rently at the best of their theoretical performance. In reality,
many factors can degrade the performance of a HPC system:
hardware can break, the applications may enter undesired
and unexpected states, components can be wrongly config-
ured. A critical aspect of modern and future supercomput-
ers is the capability of detecting faulty conditions stemming
from the improper behaviour of one or multiple parts. This
issue is relevant not only for scientific computing systems
but also in data centers and clouds providers, whose busi-
ness strongly relies on the availability of their web services.
For instance, Amazon in 2016 would have lost 15M$ for just
an hour of out of service (Hennessy and Patterson 2011). An

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

automated process for anomaly detection would be a great
improvement for current HPC systems, and it will probably
be a necessity for future Exascale supercomputers.

Nowadays, monitoring infrastructures are available in
many HPC systems and data centers, used to gather data
about the state of the systems and their components thanks
to a large variety of measurement sensors. Given the del-
uge of data originating from a monitoring framework, real-
time identification of problems and undesired situations is a
daunting task for system administrators. The growing scale
of HPC systems will only make this task even more difficult.
In this paper we present a novel approach to deal with this is-
sue, relying on a fine-grain monitoring framework and on an
autonomous anomaly detection method that uses Machine
Learning (ML) techniques.

Automated anomaly detection is still a relatively unex-
plored area in the HPC field. The current state-of-the-art re-
lies on supervised (Mitchell 1999) ML methods that learn to
distinguish between healthy and faulty states after a training
phase during which the supercomputer must be subjected
to different conditions, namely the behaviour classes to be
identified, for example normal behaviour and a set of anoma-
lies. With this scheme, the anomaly detector learns to clas-
sify different classes using labeled training data.

This requirement complicates the training process: a su-
pervised algorithm needs to be shown data containing exam-
ples of both healthy and unhealthy status (normal behaviour
and anomalies). Moreover, the data set should ideally be
unbiased and balanced, that is there should be roughly the
same number of examples (data points in the set) for each
class. In HPC systems, data is very abundant but labels are
scarce. However, in supercomputers the normal behaviour is
predominant – and can be deterministically restored by sys-
tem administrators. The same cannot be said for faulty be-
haviour, which is undesired, sporadic and uncontrolled. Fur-
thermore, even when abnormal conditions are observed and
dealt with, they are not necessarily stored in logging systems
(unless the logging systems are explicitly designed for this),
but rather the burden of assigning labels to a data set – iden-
tify the corresponding class, healthy/unhealthy – falls onto
the system administrators, a less than ideal situation. Thus
it is not easy and often neither possible to obtain the correct
labeled data sets required by typical supervised approaches.

Conversely, there is another type of ML that does not re-

9428



quire any label and it is referred to as unsupervised (Mitchell
1999) learning. In this case the data set contains only the fea-
tures describing the system state and no labels; the learning
algorithm learns useful properties about the structure of the
dataset. To address the issue, we propose an anomaly detec-
tion method less dependent on labeled data; to be precise,
our approach belongs to the semi-supervised branch of ML,
which combines the two methodologies described before.
Our idea is to use autoencoders (Goodfellow et al. 2016)
to learn the normal behaviour of supercomputer nodes and
then to use them to detect abnormal states. In our method we
require labels during the pre-processing phase because we
need to obtain a data set containing only normal conditions.
After this “normal” data set has been obtained the training
of the ML model proceeds in unsupervised fashion, without
the need of labels. A critical advantage of our method is that
it will be able to identify faulty conditions even though these
have not been encountered earlier during the training phase.
With our method we do not need to inject anomalies during
the training phase (possibly not feasible in a production sys-
tem) and we do not require system logs or changes to the
standard supercomputer users’ work flow.

The main contributions of our approach are: 1) a very
precise anomaly detection rate (up to 88%-96% accuracy);
2) identification of new types of anomalies unseen during
the initial training phase (thanks to its semi-supervised na-
ture); 3) no need for large amount of labeled data. To demon-
strate the feasibility of our approach we consider a real su-
percomputer hosted by the Italian inter-universities consor-
tium CINECA (CIN ). We use historical data collected with
an integrated monitoring system to train our autoencoders
and then we test them by injecting anomalies in a subset
of the computing nodes; the experimental results show how
this approach can distinguish between normal and anoma-
lous states with a very high level of accuracy.

Related Works
Anomaly Detection in HPC Systems
Tuncer et al. (Tuncer et al. 2017) deal with the problem of
diagnosing performance variations in HPC systems. The ap-
proach is based on the collection of several measurements
gathered by a monitoring infrastructure; from these mea-
sures, a set of statistical features describing the state of the
supercomputer is extracted. The authors then train differ-
ent ML algorithms to classify the behaviour of the super-
computer using the statistical features previously mentioned.
Unfortunately the authors propose a supervised approach
which is not perfectly suited for the HPC context (as dis-
cussed previously).

Baseman et al. (Baseman et al. 2016) propose a similar
method for anomaly detection in HPC systems. They apply
a general statistical technique called classifier-adjusted den-
sity estimation (CADE) to the HPC context. CADE relies on
the observation that combining a uniform density estimate
and the probabilistic output of a classifier results in an accu-
rate density estimator. First they extract temporal relational
features and their gradients from the sensor data. Then they
use both real and artificially generated data (thanks to den-

sity estimation) to train a supervised classifier, specifically
a Random Forest classifier, in order to rank each data point
depending on its “anomalousness”. Again, the main limit of
this work is to be based on a supervised approach.

Dani et al. (Dani, Doreau, and Alt 2017) present an un-
supervised approach for anomaly detection in HPC. Their
work is remarkably different from our approach since they
do not rely on a monitoring infrastructure but consider only
the console logs generated by computing nodes. The goal of
the method is to distinguish log messages regarding faulty
situations from logs generated by nodes in normal condi-
tion; in order to do so clustering methods (k-means) are
used. This work focuses on faults that can be recognized by a
node itself and recorded in a log message, thus greatly lim-
iting the class of detectable anomalies. Conversely, in our
approach we infer anomalies using simply the data collected
by a monitoring infrastructure, without requiring a mecha-
nism to identify anomalies on the nodes.

Anomaly Detection with Deep Learning
Approaches
Although not yet applied to the HPC field, Deep Learning
based approaches for anomaly detection have been stud-
ied in other areas (Kwon et al. 2017; Kiran, Thomas, and
Parakkal 2018), especially in recent years.

Lv et al. (Lv et al. 2016) propose a deep learning based
algorithm for fault diagnosis in chemical production sys-
tems. The proposed method is capable of real time detec-
tion and classification and, moreover, it can do the diagnosis
online. Nevertheless, their approach is supervised and thus
it definitely differs from ours. Lee et al. (Lee, Cheon, and
Kim 2017) introduce a convolutional neural network (CNN)
model for fault identification and classification in semicon-
ductor manufacturing processes. This method makes it pos-
sible to locate the variable and time information that repre-
sents process faults.

Costa et al. (Costa, Angelov, and Guedes 2015) describe a
fully unsupervised algorithm for real-time detection of faults
in industrial plants. The algorithm relies on the identifica-
tion of a set of features that are then used to learn the normal
behaviour of the plant, expressing it as a probability den-
sity estimation. The online classifier then uses the distance
from the normal distribution to classify new data samples.
The model is unsupervised and it can handle unseen types of
anomalies. However, the approach is specifically targeted at
plants for industrial process control and thus not well suited
for our HPC system case. Particularly, a relatively small set
of features is considered w.r.t. to the hundreds (thousands)
of metrics found in a supercomputer.

Ince et al. (Ince et al. 2016) discuss a CNN-based method
for electrical motor fault detection; their method can work
directly on the raw measurement data, with no preprocess-
ing. The neural network combines feature extraction and
classification, but proceeds in a supervised manner.

Data Collection
A very important aspect for our anomaly detection approach
is the availability of large quantity of data that monitors

9429



and thus describes the state of a supercomputer. To test
our approach we take advantage of a supercomputer with
an integrated monitoring infrastructure able to handle large
amounts of data coming from several different sources. Our
target system is D.A.V.I.D.E.(Ahmad et al. 2017), an energy
efficient supercomputer developed by E4 Computer Engi-
neering (e4 ) and hosted by CINECA in Bologna, Italy. It
is composed by 45 nodes with a total peak performance of
990 TFlops and an estimated power consumption of less than
2 kW per node. Each node hosts two IBM POWER8 Pro-
cessors with NVIDIA NVLink and four Tesla P100 GPUs.
The system was ranked #440 in TOP500 (Dongarra, Meuer,
and Strohmaier 1994) and #18 in GREEN500 (Feng and
Cameron 2007) in November 2017 list.

The data collection infrastructure deployed in
D.A.V.I.D.E. is called Examon and has been pre-
sented in previous works (Beneventi et al. 2017;
Bartolini et al. 2018). Examon is a fine-grained, lightweight
and scalable monitoring infrastructure for Exascale su-
percomputers. The data coming from heterogeneous data
sources is gathered in an integrated and uniform repository,
making it very easy to create data sets providing a holistic
view of the supercomputer and thus describing the system
state. The main components of the Examon framework
are a set of agents running outside the computing nodes,
but tightly coupled with them. These agents monitor the
power consumption of each computing node at the plug as
well as performance and utilization metrics. The monitored
values are sent to a data management backbone, through
a communication layer based on the open-source MQTT
protocol, a TCP/IP protocol designed for low bandwidth
and high latency networks, with minimal resource demands.

Since there are limitations on the storage space available
for the monitoring infrastructure, it is impossible to store
the raw data. The solution adopted in D.A.V.I.D.E. was to
discard the fine-grained data older than a week and to pre-
serve indefinitely job information and coarse-grained data
(long term storage, around 6GB after 7 months of activity).
For this paper, we work with the coarse-grained data aggre-
gated in 5-minutes long intervals. Furthermore, we focused
on a subset of the data collected by Examon; for each node
we have 166 metrics (our features), i.e. core loads, tempera-
tures, fan speed, power consumptions, etc.

The Autoencoder-Based Approach
We aim at detecting anomalies that happen at the node-level.
Currently, we focus on single nodes. We create a set of sep-
arate autoencoder models, one for each node in the system.
Each model is trained to learn the normal behaviour of the
corresponding node and to be activated if anomalous con-
ditions are measured. If an autoencoder can learn the corre-
lations between the set of measurements (features) that de-
scribe the state of a supercomputer, then it can consequently
notice changes in these correlations that indicate an abnor-
mal state. Under normal operating conditions these features
are linked by specific relations (i.e. the power consumption
of a core is directly related to the workload and temperature
to the power and frequency). We hypothesize that these cor-

relations will be perturbed if the system enters in an anoma-
lous state.

The reconstruction error is the element we use to detect
anomalies. An autoencoder can be trained to minimize this
error. In doing so, it learns the relationships among the fea-
tures of the input set. If we feed a trained autoencoder with
data not seen during the training phase, it should reproduce
the new input with good fidelity, at least if the new data re-
semble the data used for the training. If this is not the case,
the autoencoder cannot correctly reconstruct the input and
the error will be greater. We propose to detect anomalies by
observing the magnitude of the reconstruction error.

All autoencoders have the same structure. We opted for a
fairly simple structure composed by three layers: I) an input
layer with as many neurons as the number of features (166),
II) a densely connected intermediate sparse layer (Ranzato,
Boureau, and Lecun 2008) with 1660 neurons (ten times the
number of features) with Rectified Linear Units (ReLu) as
activation functions and a L1 norm regularizer (Goodfellow
et al. 2016), III) a final dense output layer with 166 neurons
with linear activations. This network was obtained after an
empirical evaluation, after having experimented with differ-
ent topologies and parameter configurations. To summarize,
our methodology has the following steps: 1) create an au-
toencoder for each computing node in the supercomputer;
2) train the autoencoders using data collected during normal
operating conditions; 3) identify anomalies in new data us-
ing the reconstruction error obtained by the autoencoders.

Experimental Evaluation
In every HPC system there are multiple possible sources of
anomalies and fault conditions, ranging from hardware faults
to software errors. In this paper we verify the proposed ap-
proach on a type of anomaly that easily arises in real sys-
tems and happens at the level of single nodes, namely mis-
configuration. More precisely, we consider the misconfigura-
tion of the frequency governor of a computing node. Modern
Linux systems allow to specify different policies regulating
the clock speed of the CPUs, thanks to kernel-level drivers
referred as frequency governors (Brodowski and Golde
2013). Different policies have different impacts on the clock
speed, frequency and power consumption of the CPUs.

We considered three different policies. The first one, con-
servative, is the default policy on D.A.V.I.D.E. (the normal
behaviour); it sets the CPU clock depending on the current
CPU load. Two other types of policies have been used to
generate anomalies, i) the powersave policy and ii) the per-
formance policy. These frequency governors statically set
the CPU to the, respectively, lowest and highest frequency
in the allowed range.

Results
In this work we used an off-line approach. We gathered
the measurements collected during months of real usage of
D.A.V.I.D.E. and we created a data set; the data is normal-
ized to have values in the range [0, 1]. The data set is split
in 3 components: 1) the training setDTrain (containing data
points within periods of normal behaviour), 2) the test set

9430



Figure 1: Reconstruction error for node davide45

without anomalies DN
Test (again, only periods of normal be-

haviour) and 3) the test set with anomalies DA
Test (the peri-

ods when we injected anomalies on some nodes).
For these experiments we selected a subset of the data col-

lected by Examon during D.A.V.I.D.E. lifetime. The period
we considered is 83 days long, from March 2018 to May
2018. During this period D.A.V.I.D.E. was in the normal
state for most of the time – 66 days, 80% of the time – while
we forced anomalous states for smaller sub-periods of a few
days, 13 days in total. Since we know when the anomalies
were injected identifyingDA

Test is trivial.DTrain andDN
Test

were created by randomly splitting the data points belonging
to the 66 days of normal state, 80% of the data points going
to DTrain and 20% to DN

Test.
Each autoencoder is trained with Adam (Kingma and Ba

2014) optimizer with standard parameters, minimizing the
mean absolute error; the number of epochs used in the train-
ing phase is 100 and the batch size has a fixed value (32).
These values were chosen after a preliminary exploration be-
cause they guarantee very good results with very low com-
putational costs. The time required to train the network is
around 5 minutes on a quad-core processor (Intel i7-5500U
CPU 2.40GHz) with 16GB of RAM (without using GPUs).

Reconstruction Error-Based Detection As explained
previously, our anomaly detection method relies on the hy-
pothesis that an autoencoder can be taught to learn the cor-
relations among the features in a data set representing the
healthy state of a supercomputer node. In this case the au-
toencoder would be capable to reconstruct an input data set
never seen before, if this new input resembles the healthy
one used during the training phase – if in the unseen data set
the features correlations are preserved. Conversely, an au-
toencoder would struggle to reconstruct data sets where the
learned correlations do not hold. To demonstrate our hypoth-
esis, we expect to observe higher reconstruction errors for
the anomalous periods with respect to the error obtained in
normal periods. We are not strictly interested in the absolute
value of the reconstruction error but rather on the relative
difference between normal and anomalous periods.

This reconstruction error is plotted in Figure 1; it displays
the results computed for node davide45 (other nodes were
omitted for space reason but their behaviour is very similar).

DN
Test DA

Test

Normalized MAE 1.08 14.54
Normalized RMSE 1.17 11.18

Table 1: Quantitative Analysis: average over all nodes

Node 95-th perc. 97-th perc. 99-th perc.
N A N A N A

davide17 0.97 0.89 0.98 0.93 0.99 0.97
davide19 0.97 0.90 0.98 0.94 0.99 0.97
davide45 0.97 0.92 0.98 0.95 0.99 0.98

davide27 0.95 0.90 0.91 0.77 0.86 0.52
davide28 0.94 0.88 0.96 0.89 0.90 0.69
davide29 0.97 0.75 0.98 0.82 0.99 0.85

Average 0.96 0.87 0.96 0.88 0.95 0.82

Table 2: Classification Results

The x-axis and y-axis show, respectively, the time and the
normalized reconstruction error (we sum the error for each
feature and divide by the number of features NF ). The re-
construction error trend is plotted with a light blue line; the
gaps in the line represent periods when the node was idle
and that have been removed from the data set.

We observe 6 anomalous periods (highlighted by colored
lines along the x-axis): during the first 5 (red lines) the fre-
quency governor was set to powersave while during the last
one (blue) the governor was set to performance. The recon-
struction error is never exactly zero, but this is not our con-
cern: our analysis does not rely on the absolute value of the
error, but rather on the relative magnitude of the errors com-
puted for different data sets. The reconstruction error is in-
deed greater when the nodes are in an anomalous state, as
underlined by the higher values in the y-axis in the periods
corresponding to anomalies. Hence, the autoencoder strug-
gles to recreate the “faulty” input data set.

Although the plot shown is promising, it does not actually
show that the reconstruction error for unseen healthy input
is actually lower than the error committed with anomalous
periods. This happens because the normal behaviour data set
was randomly split in the subset DTrain and DN

Test and it is
impossible to distinguish between them by simply looking at
the plot. However, our insight is backed by the quantitative
analysis, as summarized in Table 1. To measure the quality
of the anomaly detection we rely on the Mean Absolute Er-
ror (MAE) and on the Root Mean Squared Error (RSME).
For each autoencoder we computed MAE and RSME for
every set DTrain, DN

Test and DA
Test.

The results obtained for all autoencoders are very simi-
lar but in order to make a fair comparison between differ-
ent nodes we do not use the absolute values of MAE and
RSME but we rather employ a normalized version: the nor-
malized MAE (RSME) is obtained by dividing the actual
MAE (RSME) by the MAE (RSME) computed for DTrain.
In this way we force the normalized error for the training set
to be equal to 1 (since we are not strictly interested in its ab-
solute value) and we highlight the relative difference of error

9431



(a) Normal data set (b) Anomaly data set

Figure 2: Error distribution for node davide45

between sets. If the normalized error for a test set is close to
one this means that the autoencoder was able to reconstruct
the input quite well; larger errors imply that the autoencoder
was not capable to reproduce the input – these situations are
those that we claim to be anomalies.

In Table 1 we can see the results for the test sets. The
error for theDA

Test is the average value obtained considering
both anomaly types. The normalized error for DTrain has
not been reported since it is always equal to 1. The values
reported in the table are the average computed over all the
autoencoders (as many as in the chosen subset of nodes of
D.A.V.I.D.E.).

The results clearly indicate that our hypothesis holds true
(as hinted also by the previous plot with the reconstruction
error). Both the average normalized MAE and RSME for
the test set with no anomalies DN

Test are very close to 1,
suggesting that the autoencoders have correctly learned the
correlations between the measured features of a healthy sys-
tem. Therefore, when the autoencoders are fed with unseen
input that preserve these correlations they can reconstruct
it with good precision. On the contrary, the autoencoders
cannot correctly reproduce new input that does not resem-
ble a healthy system, that is a system in an anomalous state.
This is shown by the markedly higher normalized MAE and
RSME obtained for DA

Test.

Detection Accuracy So far we have observed the recon-
struction error trends obtained by our approach based on au-
toencoders, but we still have to discuss how the reconstruc-
tion error can be used to actually detect an anomaly. Our
goal is to identify an error threshold θ to discriminate be-
tween normal and anomalous behaviour. In order to do so we
shall start by looking at the distributions of the reconstruc-
tion errors. Again, we are considering each autoencoder (and
thus corresponding node) separately. We distinguish the er-
rors distribution for healthy data sets (DTrain ∪DN

Test) and
for the unhealthy data set (DA

Test).
Figure 2 shows the error distributions for the autoencoder

corresponding to node davide45 – again other nodes have
the same behaviour. The graph contains the histograms of
the error distributions; in the x-axis we have the reconstruc-

tion error and in the y-axis there is the number of data
points with the corresponding error. The left-most sub-figure
(Fig. 2a) shows the error distribution for the normal data set
(DTrain ∪DN

Test) and the other one (Fig. 2b) shows the dis-
tribution for the anomalous data set. It is quite easy to see
that the errors distribution of the normal data set is extremely
different from the anomalous one.

Since we can clearly distinguish the error distributions
we opted for a simple method to classify each data point:
if the reconstruction error Ei for data point i is greater than
a threshold θ, then the point is “abnormal”; otherwise the
data point is considered normal. The next step is to identify
the threshold used to classify each data point. We choose as
a threshold the n-th percentile of the errors distribution of
the normal data set, where n is a value that depends on the
specific autoencoder/node. For example in the case of da-
vide45 (Fig. 2), if n = 95 the threshold is equal to 0.082; this
means that 95% of the errors in the normal data set (Fig. 2a)
are smaller than this value. Hence, if a data point fed to our
trained autoencoder generates an error greater than 0.082 we
classify it as anomalous. In order to find the best n value for
each autoencoder we employed a simple generate-and-test
search strategy, that is we performed experiments with a fi-
nite number of values and then chose those guaranteeing the
best results in term of classification accuracy.

Broadly speaking, the best results are obtained with
higher thresholds, i.e. n ≥ 93. To asses the accuracy of the
classification (thus the goodness of the threshold) we com-
pute the F-score (Van Rijsbergen 1979) for each class; in our
case we have two classes, normal (N) and anomaly (A). The
F-score is a widespread metric to measure the accuracy of a
classification test and can assume values in the [0, 1] range,
with values closer to 1 indicating a higher accuracy. In Ta-
ble 2 we see some results. In the first column from the left
there is the node whose autoencoder F-score values are re-
ported (we report the values for only a subgroup of nodes).
The remaining columns report the F-score values for 3 dif-
ferent n-th percentiles (and therefore different thresholds);
there are two F-score values for each n-th percentile, one
computed for the normal class (N) and one for the anomaly
class (A).

9432



The table can be divided in three subparts (separated by
horizontal lines): 1) the first one contains nodes similar to
davide45, i.e. nodes where most of the anomalies were of
type powersave; 2) the second group is comprised of nodes
where most of the anomalies had the frequency governor set
to performance; 3) the last group (the last row) is the av-
erage of the other nodes. In general we can see that the F-
score values are very good, highlighting the high accuracy of
our approach. A notable difference can be observed between
the two sub-groups of nodes. In nodes with a prevalence of
powersave anomalies higher thresholds (higher n-th values)
guarantee better results: this happens because, as seen for
instance in Figure 2, the error distributions are more sepa-
rable. In the case of nodes characterized by more anomalies
of performance type, increasing the threshold does not nec-
essarily improve the accuracy – although this can still occur
for some nodes. In these nodes it is harder to distinguish nor-
mal data points from anomalies of type performance (since
they behave similarly). Hence, simply increasing the thresh-
old is not beneficial, for example for both davide27 and da-
vide28 the best n-th value found through our empirical ex-
ploration is n = 94. The underlying reason is that increasing
the threshold (for these nodes) leads to a marked increase in
the number of false negatives.

Conclusion
In this paper we proposed an approach to detect anoma-
lies in a HPC system that relies on large data sets collected
via a lightweight and scalable monitoring framework and
employs autoencoders to distinguish between normal and
anomalous system states.

In the future we plan to further validate our method by
testing it on a broader set of anomalies. Our goal is to ex-
pand the anomaly detection technique in order to be able to
also classify different types of anomalies; in addition to rec-
ognize that the system is in an anomalous state, the autoen-
coder (possibly a refined and more complex version) will
be also able to distinguish among different anomaly classes
and sources. We also plan to implement our approach in a
on-line prototype to perform real-time anomalous detection
on a supercomputer, again using D.A.V.I.D.E. as a test bed.

Acknowledgements
This work was partially supported by the European H2020
FET project OPRECOMP (g.a. 732631). We also want to
thank CINECA and E4 for granting us the access to their
systems.

References
Ahmad, W. A.; Bartolini, A.; Beneventi, F.; Benini, L.; Borghesi,
A.; Cicala, M.; Forestieri, P.; Gianfreda, C.; Gregori, D.; and Libri,
A. 2017. Design of an energy aware petaflops class high perfor-
mance cluster based on power architecture. In 2017 IEEE Interna-
tional Parallel and Distributed Processing Symposium Workshops
(IPDPSW).
Bartolini, A.; Borghesi, A.; Libri, A.; Beneventi, F.; Gregori, D.;
Tinti, S.; Gianfreda, C.; and Altoè, P. 2018. The D.A.V.I.D.E. big-
data-powered fine-grain power and performance monitoring sup-
port. In Proceedings of the 15th ACM International Conference on
Computing Frontiers, CF 2018, 303–308.

Baseman, E.; Blanchard, S.; DeBardeleben, N.; Bonnie, A.; and
Morrow, A. 2016. Interpretable anomaly detection for monitoring
of high performance computing systems. In Outlier Definition, De-
tection, and Description on Demand Workshop at ACM SIGKDD.
San Francisco (Aug 2016).
Beneventi, F.; Bartolini, A.; Cavazzoni, C.; and Benini, L. 2017.
Continuous learning of hpc infrastructure models using big data
analytics and in-memory processing tools. In Proceedings of the
Conference on Design, Automation & Test in Europe. European
Design and Automation Association.
Brodowski, D., and Golde, N. 2013. Cpu frequency and voltage
scaling code in the linux (tm) kernel. Linux kernel documentation.
Cineca inter-university consortium web site. http://www.cineca.it//
en. Accessed: 2018-06-29.
Costa, B. S. J.; Angelov, P. P.; and Guedes, L. A. 2015. Fully
unsupervised fault detection and identification based on recursive
density estimation and self-evolving cloud-based classifier. Neuro-
computing 150:289–303.
Dani, M. C.; Doreau, H.; and Alt, S. 2017. K-means application
for anomaly detection and log classification in hpc. In International
Conference on Industrial, Engineering and Other Applications of
Applied Intelligent Systems, 201–210. Springer.
Dongarra, J. J.; Meuer, H. W.; and Strohmaier, E. 1994. 29th
top500 Supercomputer Sites. Technical report, Top500.org.
E4 computer engineering. https://www.e4company.com/en/.
Feng, W.-c., and Cameron, K. 2007. The green500 list: Encourag-
ing sustainable supercomputing. IEEE Computer 40(12).
Goodfellow, I.; Bengio, Y.; Courville, A.; and Bengio, Y. 2016.
Deep learning, volume 1. MIT press Cambridge.
Hennessy, J. L., and Patterson, D. A. 2011. Computer architecture:
a quantitative approach. Elsevier.
Ince, T.; Kiranyaz, S.; Eren, L.; Askar, M.; and Gabbouj, M. 2016.
Real-time motor fault detection by 1-d convolutional neural net-
works. IEEE Transactions on Industrial Electronics.
Kingma, D. P., and Ba, J. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.
Kiran, B. R.; Thomas, D. M.; and Parakkal, R. 2018. An
overview of deep learning based methods for unsupervised and
semi-supervised anomaly detection in videos. Journal of Imaging.
Kwon, D.; Kim, H.; Kim, J.; Suh, S.; Kim, I.; and Kim, K. 2017. A
survey of deep learning-based network anomaly detection. Cluster
Computing.
Lee, K. B.; Cheon, S.; and Kim, C. O. 2017. A convolutional neu-
ral network for fault classification and diagnosis in semiconductor
manufacturing processes. IEEE Transactions on Semiconductor
Manufacturing 30(2):135–142.
Lv, F.; Wen, C.; Bao, Z.; and Liu, M. 2016. Fault diagnosis based
on deep learning. In American Control Conference, 2016. IEEE.
Mitchell, T. M. 1999. Machine learning and data mining. Commu-
nications of the ACM 42(11):30–36.
Ranzato, M. A.; Boureau, Y.-L.; and LeCun, Y. 2008. Sparse fea-
ture learning for deep belief networks. In Advances in neural in-
formation processing systems, 1185–1192.
Tuncer, O.; Ates, E.; Zhang, Y.; Turk, A.; Brandt, J.; Leung, V.
J.; Egele, M.; and Coskun, A. K. 2017. Diagnosing performance
variations in HPC applications using machine learning. In Interna-
tional Supercomputing Conference, 355–373. Springer.
Van Rijsbergen, C. 1979. Information retrieval. Dept. of Computer
Science, University of Glasgow. 14.

9433


