
The Thirty-First AAAI Conference on Innovative Applications of Artificial Intelligence (IAAI-19)

DeBGUer: A Tool for Bug Prediction and Diagnosis

Amir Elmishali, Roni Stern, Meir Kalech
The Cyber Security Research Center at Ben Gurion University of the Negev

amir9979@gmail.com, {sternron,kalech}@bgu.ac.il

Abstract

In this paper, we present the DeBGUer tool, a web-based tool
for prediction and isolation of software bugs. DeBGUer is
a partial implementation of the Learn, Diagnose, and Plan
(LDP) paradigm, which is a recently introduced paradigm for
integrating Artificial Intelligence (AI) in the software bug de-
tection and correction process. In LDP, a diagnosis (DX) al-
gorithm is used to suggest possible explanations – diagnoses
– for an observed bug. If needed, a test planning algorithm
is subsequently used to suggest further testing. Both diag-
nosis and test planning algorithms consider a fault predic-
tion model, which associates each software component (e.g.,
class or method) with the likelihood that it contains a bug.
DeBGUer implements the first two components of LDP, bug
prediction (Learn) and bug diagnosis (Diagnose). It provides
an easy-to-use web interface, and has been successfully tested
on 12 projects.

Introduction
Software is ubiquitous and its complexity is growing. Con-
sequently, software bugs are common and their impact can
be very costly. Therefore, much effort is diverted by soft-
ware engineers to detect, isolate, and fix bugs as early as
possible in the software development life cycle.

Learn, Diagnose, and Plan (LDP) is a recently proposed
paradigm that aims to support bug detection and isolation
using technologies from the Artificial Intelligence (AI) lit-
erature (Elmishali, Stern, and Kalech 2018). To support bug

Issue Tracking 
System

Version 
Control System

Learn a Fault 
Prediction Model

Run 
Tests

File Bug 
Report

Generate 
Tests

Run Dx
algorithm

Plan 
Tests

Bug 
Found?

Bug 
Isolated?

No

No Yes

Yes Send bug 
details

Root cause

Fix Bug

Figure 1: The workflow of the LDP paradigm.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

detection, LDP uses Machine Learning to train a fault pre-
diction model that predicts which software components are
likely to contain bugs, providing guidance to testing efforts.
To support bug isolation, LDP uses a software diagnosis al-
gorithm to detect the root cause of failed tests, and tech-
niques from automated planning to plan additional tests.

In this paper, we describe DeBGUer, a novel open source
tool that is a partial implementation of LDP. DeBGUer pro-
vides a web interface to the LDP bug prediction and diagno-
sis capabilities. To use DeBGUer, a developer simply needs
to provide a link to its issue tracker (e.g., Jira) and source
control management system (e.g., Git). Then, DeBGUer vi-
sualizes the fault prediction results, showing a fault (bug)
likelihood estimate for every software component in a given
version of the code. Through its web interface, DeBGUer
also exposes the LDP diagnosis functionality: the developer
points to a set of tests, DeBGUer executes them, and if some
of the tests fail it outputs a set of software components that
may have caused the tests to fail.

Our tool can be seen as a counterpart to the GZoltar
tool (Campos et al. 2012). GZoltar provides two key func-
tionalities: test suite minimization and software diagnosis.
DeBGUer does not deal with test suite minimization. The
DeBGUer software diagnosis algorithm is an improved ver-
sion of diagnosis algorithm used by GZoltar.1 DeBGUer
also provides a software fault prediction functionality, which
is not supported by GZoltar.

Having such an implementation of LDP – DeBGUer –
serves several purposes. First, developers can use it in prac-
tice to follow LDP. Second, researchers working on software
fault prediction or software diagnosis can use DeBGUer to
evaluate their algorithms against the corresponding algo-
rithms implemented in DeBGUer.

In this paper, we provide a brief description of the LDP
paradigm and describe our implementation of it in De-
BGUer. Then, we report on an empirical evaluation of De-
BGUer on 12 open-source projects so far. Results show ac-
curate bug prediction and isolation capabilities, demonstrat-
ing the applicability of LDP in general and DeBGUer specif-
ically.

1GZoltar uses the Barinel algorithm (Abreu, Zoeteweij, and
van Gemund 2009), while DeBGUer uses a data-augmented ver-
sion of Barinel that were already shown to outperform the vanilla

9446



Figure 2: Export from the Jira issue tracker, showing data on
bug TIKA-1222.

The LDP Paradigm
As a preliminary, we briefly describe the LDP paradigm. For
a complete description please see Elmishali et al. (2018).
LDP uses three AI components:

• A fault predictor. An algorithm that estimates the proba-
bility of each software component to have a bug.

• A diagnoser. A diagnosis (DX) algorithm that accepts as
input a set of test executions including at least one failed
test. It outputs one or more possible explanations for the
failed tests. Each of these explanations, referred to as di-
agnoses, is an assumption about which software compo-
nents are faulty. The diagnoser also associates every diag-
nosis with a score that indicates how likely the diagnosis
is the true explanation for the failed tests.

• A test planner. An algorithm that accepts the set of di-
agnoses outputted by the diagnoser and suggests addi-
tional tests to perform in order to gain additional diag-
nostic knowledge that will help identifying the correct di-
agnosis.

Figure 1 illustrates the LDP workflow. The process starts
by extracting information from issue tracking system (ITS)
and version control system (VCS) that is used. ITS records
all reported bugs and their status (e.g., fixed or open). VCS
records every modification done to the source code. Promi-
nent examples of ITS and VCS are Jira and Git, respectively.
The information extracted from these systems, such as the
set of past failures and code changes, is used by LDP to train
a bug prediction model using standard Machine Learning.

When one or more tests fail, indicating that a bug exists,
the set of executed tests is inputted to the LDP diagnoser.
The diagnoser outputs a set of possible diagnoses and their
score. If a single diagnosis is found whose score is high
enough (how much is “high enough” is a parameter), then
this diagnosis is passed to the developer to be fixed. If not,
then the test planner proposes an additional test to be per-
formed in order to narrow down the set of possible diag-
noses. This initiates an iterative process in which the test
planner plans an additional test, the tester performs it, and
the diagnoser uses the new data obtained to compute the
set of possible diagnoses and their likelihoods. This process
stops when a diagnosis is found whose probability of being
correct is high enough. At this stage a bug report is added to
the issue tracking system and the diagnosed bug is given to
a developer to fix the (now isolated) bug.

Barinel (Elmishali, Stern, and Kalech 2016).

Figure 3: Screenshot from Github, showing the commit that
fixed Bug TIKA-1222 from Figure 2.

Implementation Details
In this section, we describe the architecture of DeBGUer.
As introduced, DeBGUer is partial implementation of the
LDP paradigm. It includes AI components that perform two
tasks: fault prediction and diagnosis. Next we describe the
implementation details of these components as well as the
web interface.

Fault Predictor
Fault prediction in software is a classification problem.
Given a software component, such as method or class etc.,
the goal is to determine its class – healthy or faulty. Super-
vised machine learning algorithms are commonly used to
solve classification problems. They work as follows. As in-
put, they are given a set of labeled instances, which are pairs
of instances and their correct labeling, i.e., the correct class
for each instance. In our case, instances are software com-
ponents such as classes or methods, and the labels are which
software component is healthy and which is not. They output
a classification model, which maps an (unlabeled) instance
to a class. This set of labeled instances is called the training
set and the act of generating a classification model from the
training set if referred to as learning.

Learning algorithms extract features of the instances in
the training set, and learn the relation between the features
of the instances and their class. A key to the success of
machine learning algorithms is the choice of features used.
Many possible features were proposed in the literature for
software fault prediction. Radjenovic et al. (2013) surveyed
features used by existing software prediction algorithms. In
a preliminary set of experiments we found that the combina-
tion of features that performed best is a combination of 405
features from the features listed by Radjenovic et al. (2013)
and bug history features that were created by us. This list
of features includes the McCabe and Halstead (1977) com-
plexity measures, several object oriented measures such as
the number of methods overriding a superclass, number of
public methods, number of other classes referenced, and is
the class abstract; and several process features such as the
age of the source file, the number of revisions made to it
in the last release, the number of developers contributed to
its development, and the number of lines changed since the
latest version.2

2The exact list of the 405 features that we used can be

9447



Figure 4: The required details to initialize the prediction and
diagnosis tasks for project Apache REEF.

Obtaining a Training Set To learn a fault prediction
model we require a training set. In our case, a training set
is a set of software components and a labeling that indicates
which components are faulty and which are not. Manually
labeling the root cause of past bugs is not a scalable solution
to obtain a training set. Instead, DeBGUer extracts the train-
ing set automatically from the project’s issue tracking and
version control system, as described below.

Most projects these days use an issue tracking system,
such as Jira and Bugzilla, and a version control system, such
as Git and Mercurial. Issue tracking systems record all re-
ported bugs and track changes in their status. They asso-
ciate each bug with a unique issue ID. Version control sys-
tems, track modifications – commits – done to the source
files. It is accepted that a commit should contain only the
changes that required to address a specific task. A best prac-
tice in software development, which is usually enforced, is
for the developer to add a message to each commit describ-
ing what was done. In particular, commits that fix a bug
should write the issue ID in the commit message. DeBGUer
uses this information to match fixed bugs to the commit done
to fix them. For a bug X , let Φ(X) denote the set of soft-
ware components modified in the commit done to fix X . In
the absence of manual labeling of faulty software compo-
nents, DeBGUer assumes that at least one of the in Φ(X)
has caused the bug X . To concretely decide which of these
components were faulty, our tool enables two alternative as-
sumptions. The first, which we simply call “all modified”,
assumes that all components in Φ(X) have caused the bug.
The second, dubbed “most modified”, assumes that the com-
ponent in Φ(X) that caused the bug is the component whose
revisions were most extensive. This is measured by count-
ing the number of lines of code in the components that were
either modified, added, or deleted. We chose these two meth-
ods due to their simplicity, but note there are more elaborate
heuristic methods for identifying the root cause of an ob-

viewed in package learner.wekaMethods.features in
our source code, which is publicly available at https://github.com/
BGU-AiDnD/Debugger.

Figure 5: The DeBGUer user home page.

served software bug.
In addition, there are multiple options to define the ba-

sic software unit, e.g. class, method or code block. Our tool
currently supports defining the based unit as either a class
or a method. Thus, the tool enables four configurations: (1)
all modified, file-level components, (2) most modified, file-
level components, (3) all modified, method-level compo-
nents, and (4) most modified, method-level components.

To illustrate this automatic labeling process, Figure 2
shows a screenshot of bug Tika-1222 reported for the
Apache Tika project using the Jira issue tracker. Figure
3 shows the commit that contains the fix for this bug in
the Apache Tika Git repository. Note that the fixed bug id
(TIKA-1222) is mentioned in the commit message. There-
fore, DeBGUer marks the commit as the ones that fixed
the bug. Also, this screenshot shows some of the details
recorded by the version control system about the source code
modifications made to fix bug. In particular, it shows that
this commit changed 2 source files. Hence, DeBGUer will
extract the source files or methods changed in the commit.
Under the “most modified” assumption and a file-level com-
ponent, the faulty component of bug Tika-1222 shown in
figure 3 is XMLReaderUtils.

Figure 6: DeBGUer’s fault prediction webpage results.

Diagnoser
Next, we describe the diagnosis algorithm used by the De-
BGUer diagnoser component, and in particular how it inte-
grates with the fault prediction model described in the pre-
vious section. The input to the diagnoser is the observed
system behavior in the form of a set of tests that were ex-
ecuted and their outcome – pass or fail. The output is a set
of more explanations, where an explanation is a sets of soft-
ware components (e.g., class or method) that, if faulty, ex-
plain the observed failed and passes tests.

The diagnoser we implemented is an extension of the
Barinel software diagnosis algorithm (Abreu, Zoeteweij, and

9448



Figure 7: DeBGUer’s fault likelihood viewer.

van Gemund 2009; 2011; Hofer, Wotawa, and Abreu 2012;
Campos et al. 2013). We provide here a brief description of
Barinel. Barinel is a combination of model-based diagno-
sis (MBD) and spectrum-based fault localization (SFL). In
MBD, we are given a tuple 〈SD,COMPS,OBS〉, where
SD is a formal description of the diagnosed system’s behav-
ior, COMPS is the set of components in the system that
may be faulty, and OBS is a set of observations. A diag-
nosis problem arises when SD and OBS are inconsistent
with the assumption that all the components in COMPS
are healthy. A diagnosis is a set of non healthy components.
The output of an MBD algorithm is a set of diagnoses.

In software diagnosis COMPS is a set of software com-
ponents (classes or methods). Observations (OBS) are ob-
served executions of tests. Every observed test is labeled as
“passed” or “failed”. This labeling is done manually by the
tester or automatically in case of automated tests (e.g., failed
assertions).

Many MBD algorithms use conflicts to direct the search
towards diagnoses, exploiting the fact that a diagnosis must
be a hitting set of all the conflicts (de Kleer and Williams
1987; Stern et al. 2012). Intuitively, since at least one com-
ponent in every conflict is faulty, only a hitting set of all con-
flicts can explain the unexpected observation (failed test). A
challenge in applying MBD to software is that a system de-
scription – SD – is not likely to exist in software. Instead,
Barinel considers the traces of the observed tests. A trace
of a test is the sequence of components involved in running
it. Traces of tests can be collected in practice with common
software profilers (e.g., Java’s JVMTI). If a test failed then
we can infer that at least one of the components in its trace is
faulty. Thus, the trace of a failed test is a conflict, and Barinel
considers it as such when computing diagnoses. Then, it
uses a fast hitting set algorithm called STACATTO (Abreu
and van Gemund 2009) to find hitting sets of these conflicts,
which are then outputted as diagnoses.

Barinel computes a score for every diagnosis it returns,
estimating the likelihood that it is true. The exact details of

how this score is computed is given by Abreu et al. (Abreu,
Zoeteweij, and van Gemund 2009; 2011). For the purpose
of DeBGUer, it is important to note that the score compu-
tation used by Barinel is Bayesian: it computes for a given
diagnosis the posterior probability that it is correct given the
observed passes and failed tests. As a Bayesian approach,
Barinel also requires some assumption about the prior prob-
ability of each component to be faulty. Previous work using
Barinel has set these priors uniformly to all components. De-
BGUer uses the output of its fault predictor to provide these
priors, as follows. The software fault predictor is a classi-
fier, accepting as input a software component and outputting
a binary prediction: is the component predicted to be faulty
or not and a confidence score, indicating the model’s con-
fidence about the classified class. Let conf(C) denote this
confidence for component C. We use conf(C) for Barinel’s
prior if C is classified as faulty, and 1− conf(C) otherwise.

Architecture
DeBGUer is constructed of several components in a client-
server framework. The server side is implemented in PHP
and runs a PHP container, and the client side is implemented
using AngularJS. The fault prediction component stores the
data for each user project version in a SQLITE database, and
the learning algorithm is run using WEKA. The diagnoser
component is implemented using Maven and Java bytecode
instrumentation.

DeBGUer interfaces with version control systems and is-
sue tracking systems in order to extract data about historical
versions and bugs. Currently DeBGUer supports the Git ver-
sion control and Jira and Bugzilla issue tracking systems.

Interface and Use Cases
DeBGUer supports six main use cases: (1) Adding a new
project. Add a new project to start the LDP on it. (2) Fault
prediction. Run our fault prediction algorithm over a cho-
sen version of the project. (3) Automated diagnosis. Run
our diagnosis algorithm over all failed tests of the current
version. (4) Test viewer. watch all test outcomes of the cur-
rent version. (5) Fault likelihood viewer. watch the fault
likelihood for each software component (package, class or

Figure 8: DeBGUer presents the outcomes for each test.

9449



Project name Start date #Commits #Issues #Files

Ant 2000 14328 6075 1296
CAY 2007 5950 2436 3694
DELTASPIKE 2011 2294 1353 1813
FLINK 2010 14501 10087 6396
IO 2002 2123 571 246
JCLOUDS 2009 10235 1434 5271
KYLIN 2014 7372 3332 1478
MYFACES 2006 4536 3878 1969
OAK 2012 15281 7654 4010
OPENNLP 2010 1832 1209 957
TOBAGO 2004 9663 1901 819
TOMEE 2006 10931 2174 5694

Table 1: Details about the projects we evaluated on.

method). (6) Diagnoses viewer. watch the possible explana-
tions for the observed bug.

Figure 5 shows the DeBGUer’s user home page. It is the
entry point for the use cases described above. In order to add
a new project the user is prompted to provide the Git address
of the project, and to add the specific project versions to use
in order to build the training set. Then, DeBGUer clones the
project and creates the project environment on the DeBGUer
server. The project environment also includes the reported
bugs from the issue tracker and the code history from the
source control.

Once the information from the Git and the issue tracker
is collected, DeBGUer starts the fault prediction task. Fig-
ure 6 shows a screenshot of the prediction task webpage of
DeBGUer. This webpage allows viewing and downloading
the prediction files. As explained before, there are four pre-
diction configurations: “all modified classes”, “most modi-
fied classes”, “all modified methods”, “most modified meth-
ods”. The fault likelihood viewer shows the faulty likelihood
for each software component. Figure 7 demonstrates the
fault prediction viewer webpage. Furthermore, The predic-
tion task outputs CSV files that contains a list of the software
components and their probability to contain a fault as pre-
dicted by the learning model. Once DeBGUer finishes run-
ning the tests, the user can watch the tests outcomes. Figure
8 shows the DeBGUer tests viewer. The viewer shows the
outcome for each test in the system.

The prediction model is used by the diagnosis process.
This task includes running the system tests and collect
their traces and results to isolate the faulty components that
caused failing tests. In order to trace the project tests, De-
BGUer should build the project and execute the tests. De-
BGUer uses the maven tool to build the project and the sure-
fire plugin to execute the tests. To trace the tests DeBGUer
uses java agent instrumentation, which is a framework for
performing byte-code manipulation in runtime. The output
of this task is a list of the diagnosed software components
and their probabilities.

Evaluation
We evaluated the fault predictor and diagnoser of DeBGUer
on 12 open source projects. All projects were written in
Java, use Maven as a building tool, Git as a version control,
and are publicly available at https://github.com/apache. Ta-
ble 1 lists for each of the selected projects, when the project

All Classes Most Classes
Project Recall Precision Recall Precision
Ant 0.927 0.903 0.958 0.952
CAY 0.995 0.995 0.998 0.997
DELTASPIKE 0.968 0.955 0.981 0.982
FLINK 0.957 0.956 0.982 0.981
IO 0.992 0.984 0.996 0.992
JCLOUDS 0.997 0.994 0.998 0.995
KYLIN 0.919 0.892 0.978 0.968
MYFACES 0.842 0.974 0.974 0.981
OAK 0.963 0.964 0.987 0.974
OPENNLP 0.680 0.463 0.951 0.904
TOBAGO 0.884 0.853 0.957 0.921
TOMEE 0.976 0.969 0.986 0.983

Table 2: Fault prediction results.

started (“Start date”), the number of commits in Git (“#Com-
mits”), the number of issues in the issues tracker (“#Issues”),
and the number of Java source files in the project repository
(“#Files”). Unfortunately, we did not have access to an ora-
cle to identify which components are faulty and label them
accordingly. Instead, we repeated all our experiments two
times: one time using the “most modified” assumption to
label the faulty components, and the other time using the
“all modified” assumption to label the faulty components.
The results for each of these assumptions are presented sep-
arately below.

As mentioned above, DeBGUer currently supports two
levels of software components: class and method. We con-
ducted experiments on both levels but present here only re-
sults for class-level software components, due to space lim-
itations. The results for method-level components are avail-
able at github.com/amir9979/aaai19 results.

Fault Prediction
First, we evaluated the fault prediction task. As input we
chose four versions from each project as a training set and
a later version as a testing set. We evaluate the trained fault
prediction models by measuring their precision and recall.
In brief, precision is the ratio of faulty components among
all components identified by the prediction model as faulty.
Recall is the number of faulty components identified as
such by the prediction model divided by the total number
of faulty components. Table 2 shows the recall and preci-
sion of the fault prediction models for ”All Classes” and
”Most Classes” configurations. The prediction models gen-
erated by Random Forest (with 1,000 trees) for each of the
benchmark projects. The results are, in general, impressive,
where in all but one project the precision is above 0.9, the
recall is more than 0.68 and usually much higher.

Diagnosis results
Next, we evaluated the diagnosis task. The input to a diag-
nosis task is a set of tests, their traces, and outcomes. The
output is a set of possible explanations to the observed fail-
ures (diagnoses), each having a score that estimates its cor-
rectness. Recall that the diagnoses and their scores are com-
puted by DeBGUer’s diagnoser, which uses a modified ver-
sion of the Barinel algorithm that considers the output of the
fault predictor (Elmishali, Stern, and Kalech 2016). For ev-
ery project we generated 50 different inputs in the follow-

9450



All Classes Most Classes
Top k Recall Prec. Top k Recall Prec.

IO 1.00 0.40 0.94 1.06 0.34 0.95
TOBAGO 1.14 0.49 0.84 1.32 0.46 0.61
KYLIN 1.72 0.30 0.62 2.52 0.40 0.53
OAK 2.16 0.18 0.44 4.92 0.20 0.34
OPENNLP 3.72 0.15 0.38 3.62 0.17 0.27
MYFACES 4.24 0.26 0.42 1.24 0.48 0.69

Table 3: Diagnosis evaluation metrics.

ing manner: First, we chose a bug from the test set used
to evaluate the fault predictor. Each bug is associated with
the set of faulty software components (following either the
most-modified or all-modified assumptions). Then, we con-
sidered all the JUnit tests written in the code for the pack-
ages that contains the faulty components. Then, we choose
50 tests from this set of tests, and simulated their outcomes
(pass/fail) by assuming that if a faulty component is in the
trace of a test then that test will fail with probability 0.2.
We added this probability of a test to pass even if it passes
through a faulty component since failures in software are of-
ten intermittent.

We evaluated the output of the diagnoser using the follow-
ing three metrics: Top k, average recall, and average pre-
cision. To compute the Top k metric, we assume the diag-
noses are inspected in order of their score, and return the
number of diagnoses that will be inspected until all faults
are found. For example, if Top k=1, it means that diagnosis
ranked highest contains the correct diagnosis, while higher
values indicate that more diagnoses will have to be inspected
in order to find all faulty components. Thus, lower values of
top k are preferred. This measure estimates the usefulness
of the diagnoser’s output, as it aims to measure the effort
required to fix the system using the diagnoser’s output. To
compute the average recall and average precision metrics,
we computed for every diagnosis returned by the diagnoser
its precision and recall. Then, we computed weighted aver-
age of these precision and recall values, where the results
for every diagnosis are weighted by the score given to that
diagnosis. This enables aggregating the precision and recall
of all diagnoses while considering their likelihood.

Table 3 shows the Top k, average recall, and average pre-
cision of DeBGUer’s diagnoser for the evaluated projects.
The results show that for most projects, the Top k metric was
particularly low, ranging between 1 and 4.24. In particular,
in the IO project, the average Top k was approximately 1
(we rounded the decimal point after the second digit), which
means an almost perfect diagnostic performance. The preci-
sion and in particular recall results, however were less im-
pressive. The difference between the positive Top k results
and the negative precision and recall results suggest that our
diagnoser can prioritizes the diagnoses effectively, but is not
powerful enough to dismiss incorrect diagnoses or to assign
them significantly low scores. Improving the scoring mech-
anism of software diagnosis algorithms is an active field of
research. Nevertheless, we argue that from the perspective
of usefulness to a developer, low Top k results are the most
important, since they suggest low debugging effort by the
developer when using our tool.

Conclusion
This paper describes the current version of our De-
BGUer tool, which is an implementation of the LDP
paradigm (Elmishali, Stern, and Kalech 2018) for soft-
ware fault prediction and automated software diagnosis. De-
BGUer was tested on 12 projects so far, showing promising
results. It is ready to use and avaliable at DeBGUer.ise.bgu.
ac.il. The purpose of DeBGUer is to support the dissemina-
tion of AI techniques to the software engineering industry
and to the open source community. In addition, DeBGUer
allows researchers to compare their prediction and diagno-
sis algorithms to our results, as well as build on our results to
develop more sophisticated tools. There are several exciting
directions for future work. First, we are currently testing De-
BGUer on a significantly larger set of projects. Second, we
have not implemented in DeBGUer the test planning aspect
of LDP. Third, we intend to perform a user study with ac-
tual development teams to demonstrate the benefits of using
DeBGUer in the software engineering process.

References
Abreu, R., and van Gemund, A. J. 2009. A low-cost approximate
minimal hitting set algorithm and its application to model-based
diagnosis. In SARA, volume 9, 2–9.
Abreu, R.; Zoeteweij, P.; and van Gemund, A. J. C. 2009.
Spectrum-based multiple fault localization. In Automated Software
Engineering (ASE), 88–99. IEEE.
Abreu, R.; Zoeteweij, P.; and van Gemund, A. J. C. 2011. Si-
multaneous debugging of software faults. Journal of Systems and
Software 84(4):573–586.
Campos, J.; Riboira, A.; Perez, A.; and Abreu, R. 2012. Gzoltar:
An eclipse plug-in for testing and debugging. In IEEE/ACM In-
ternational Conference on Automated Software Engineering, ASE,
378–381.
Campos, J.; Abreu, R.; Fraser, G.; and d’Amorim, M. 2013.
Entropy-based test generation for improved fault localization. In
IEEE/ACM International Conference on Automated Software En-
gineering, ASE, 257–267.
de Kleer, J., and Williams, B. C. 1987. Diagnosing multiple faults.
Artif. Intell. 32(1):97–130.
Elmishali, A.; Stern, R.; and Kalech, M. 2016. Data-augmented
software diagnosis. In AAAI, 4003–4009.
Elmishali, A.; Stern, R.; and Kalech, M. 2018. An artificial intel-
ligence paradigm for troubleshooting software bugs. Engineering
Applications of Artificial Intelligence 69:147–156.
Halstead, M. H. 1977. Elements of Software Science (Operating
and Programming Systems Series). New York, NY, USA: Elsevier
Science Inc.
Hofer, B.; Wotawa, F.; and Abreu, R. 2012. AI for the win: improv-
ing spectrum-based fault localization. ACM SIGSOFT Software
Engineering Notes 37(6):1–8.
Radjenovic, D.; Hericko, M.; Torkar, R.; and Zivkovic, A. 2013.
Software fault prediction metrics: A systematic literature review.
Information & Software Technology 55(8):1397–1418.
Stern, R.; Kalech, M.; Feldman, A.; and Provan, G. M. 2012. Ex-
ploring the duality in conflict-directed model-based diagnosis. In
AAAI.

9451


