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Abstract

High Occupancy Vehicle/High Occupancy Tolling
(HOV/HOT) lanes are operated based on voluntary HOV
declarations by drivers. A majority of these declarations are
wrong to leverage faster HOV lane speeds illegally. It is a
herculean task to manually regulate HOV lanes and identify
these violators. Therefore, an automated way of counting the
number of people in a car is prudent for fair tolling and for
violator detection.
In this paper, we propose a Vehicle Passenger Detection Sys-
tem (VPDS) which works by capturing images through Near
Infrared (NIR) cameras on the toll lanes and processing them
using deep Convolutional Neural Networks (CNN) models.
Our system has been deployed in 3 cities over a span of two
years and has served roughly 30 million vehicles with an accu-
racy of 97% which is a remarkable improvement over manual
review which is 37% accurate. Our system can generate an
accurate report of HOV lane usage which helps policy makers
pave the way towards de-congestion.

Introduction
Intelligent Transportation Systems (ITS) improve safety and
mobility through the integration of sensing, computational
power and advanced communications into the transportation
infrastructure (Xu et al. 2014). Such systems enable efficient
management of lanes by incorporating various aspects like
carpooling, tolling, traffic management and transit in a multi-
purpose roadway. This creates novel avenues for agencies
in terms of congestion pricing in order to generate revenue
and manage demand dynamically. Population growth has
resulted in heavy congestion on highway lanes, leading to
both economic and environmental concerns. Recent statistics
reveal a monotonic increase in the number of vehicles on
highways from 193 million in 1990 to approximately 268.8
million vehicles registered in 2016 in USA (sta 2018).

HOV lanes are standard car-pool lanes where a minimum
of two (HOV2+) or three (HOV3+) vehicle occupants are re-
quired to use the lane legally, making them lesser congested
and enabling efficient rapid transit (Daley et al. 2011). In
order to avoid congestion yet still encourage car-pooling,
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agencies allow cars with a single occupant to use carpool
lanes by paying a toll. These High Occupancy Toll (HOT)
lanes have a variable toll. Generally, agencies try to main-
tain a minimum speed of 45 miles per hour (mph) on such
lanes, so they need to monitor the number of single occupant
vehicles allowed to enter HOV lanes. This is done typically
by charging a toll adjusted to the dynamic congestion in the
lane. The toll price is increased if the average traffic speed in
the HOT lane decreases below the accepted minimum speed.

However, to gain the benefits offered by HOV/HOT lanes,
the entry rules (number of occupants in the vehicle) need
to be be enforced vigilantly. The declaration of the occu-
pancy status of a vehicle is a voluntarily compliance by the
driver. But in most cases, this declaration is falsified in order
to avoid the toll. The current practice is to rely on visual
inspection by road-side officers to enforce these rules, but
the process is found to be inefficient, costly and potentially
dangerous (Artan et al. 2016). Typical violation rates can ex-
ceed 50-80%, while manual enforcement rates are typically
less than 10% (Schijns and Mathews 2005). While tagging
genuine passengers as violators causes discomfort among the
consumer base, allowing too many violators in an HOV lane
nullifies its purpose. In either case, the loss is incurred by
the transportation agency providing the service. Therefore,
an automated way of counting the number of occupants of
a vehicle is extremely necessary for fair tolling and violator
detection.

In this paper, we address the above challenge by proposing
a Vehicle Passenger Detection System (VPDS) - a deep neural
network based solution for counting the number of passengers
inside a vehicle by processing its front and side images. Our
contribution to the problem is two-fold. We first apply a state-
of-the-art object detection technique, YOLOv3 (Redmon and
Farhadi 2018), for the front and the rear window detection.
This enables a fast and accurate localization of the region of
interest (ROI) in the image. Next, we perform classification
(to count number of people) separately for the front and rear
regions of interest, i.e. windows using GoogleNet (Szegedy
et al. 2015) based models. Further, we combine the outputs
to arrive at the decision of HOV/not-HOV violator for a
vehicle. We show the robustness of the proposed solution in
terms of better performance to existing approaches within
the constraints of poor image quality and significant external
factors like illumination, occlusion and traffic congestion.
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Figure 1: Present: Counting done with an RFID pass.

Application Description
The setup widely used in transportation for HOV lane en-
forcement is shown in Figure 1. Users of HOV lanes tog-
gle an RFID tag based while entering the tolling booth and
the system relies on self compliance by the driver. However,
statistics reveal that 80% of the times the driver gives a wrong
declaration to avoid toll (Schijns and Mathews 2005). There-
fore, automated methods to identify and fine the violators
have to be developed which will result in better compliance
in the usage of car pooling lanes.

Computer Vision (CV) through Artificial Intelligence (AI)
is the most effective way of developing an automated vehi-
cle occupancy counting system. Figure 2 shows the entire
pipeline for identifying HOV violators. First, the front and
the rear seat1 images are captured by two cameras, one of
which is aimed at the oncoming traffic, while the other is set
perpendicular to it. These two images are then processed us-
ing AI based approaches. In case the system finds a mismatch
between the number of passengers in the vehicle declared
during voluntary compliance and the number detected by
the system, the driver is fined with the help of the license
plate information of the vehicle. License plate recognition is
a separate problem which has been tackled in (Bulan et al.
2017). In this paper, the problem addressed is to count the
number of people seated in a vehicle and classify the vehicle
as an HOV3+ violator or a non-violator.

Background
The images captured by the hardware contains information
from the entire scene. The front and side windows of a vehicle
form a limited region of the image only. As such, we need
to crop the relevant portion of the images which is helpful
towards the task of counting passengers. Thus, the first step
in the framework is extraction of ROI.

Previous works (Xu et al. 2014) in occupancy detection
use DPM (Felzenszwalb et al. 2010) for ROI extraction, but
there are sizable limitations to it. DPM relies heavily on
image preparation, cropping and in general the saliency of the

1The terms “rear” (rear seats) and “side” (side view of rear seats)
have been used interchangeably.

Figure 2: Proposed vehicle occupancy count processing
pipeline. This involves capturing and localizing the front
and the rear images by two distinct cameras and processing
them using AI.

vehicle in the pre-processed image. Therefore, in this paper,
we propose ROI extraction using YOLOv3 (Redmon and
Farhadi 2018), which does not have such heavy dependencies
on image pre-processing.

The next step in the pipeline is to count the number of
people in vehicle using these ROIs. Occupancy Detection
methods can be broadly classified into three main categories
viz, detection, feature and density based methods as explained
below.

Detection-based methods Face detection has been exten-
sively explored for counting people by detecting passenger
faces using a pixel threshold (Wang, Xu, and Paul 2015).
Skin detection (Hao, Chen, and Li 2006) can process front
image using a color skin model to coarsely detect the facial
region. Occupancy can also be estimated by detecting the
empty seats in a vehicle (Fan et al. 2013). However, passen-
gers in a vehicle do exhibit arbitrary poses. Especially in side
view images, the visibility of faces is a prominent issue given
frequent occlusion. In such cases, detection based methods
do not yield convincing results.

Feature-based methods These methods synthesize fea-
tures which capture the difference between a passenger
and his/her surroundings. Some approaches have explored
distance-based metrics between descriptors in order to dis-
criminate between images having only the driver or both the
driver and the passenger in the front image of a vehicle (Xu,
Paul, and Perronnin 2017). Some works have shown superior
performance of classification with Fisher Vectors (Perronnin
and Dance 2007), (Perronnin, Sánchez, and Mensink 2010)
to DPM based models (Artan and Paul 2013). These features,
however, fail to capture the variability in low resolution/lesser
informative images, which is even more prominent in a real
setting.

Density-based methods These methods aim to estimate
the count of people in an image by learning to create a density
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Figure 3: Flowchart of passenger counting and HOV violator detection using Computer Vision techniques. ROI extraction from
front and rear images is followed by individual classifiers, results of which are aggregated for the final decision.

map of the input image (Sindagi and Patel 2018). This entire
spectrum of approaches fail to estimate people count in low
density scenarios.

Parts of the proposed framework were earlier reported in
(Xu et al. 2014), (Artan et al. 2016) and (Wshah et al. 2016).
This paper claims sufficient novelty and improvements over
these previous works. (Xu et al. 2014) uses DPM for localiza-
tion and Support Vector Machines (SVM) for classification
while (Artan et al. 2016) uses DPM for windshields extraction
from images and feature-specific models for classification.
(Wshah et al. 2016) proposes a solution for detecting whether
there is a passenger present in a vehicle or not, which is es-
sentially a binary classification and thus can only be used
for figuring HOV2+ violations. Our work not only improves
detection, but also counts the exact number of people in
a vehicle by incorporating multi-class classification in the
rear images. This makes our solution suitable for detecting
HOV3+ violations as well.

Usage of AI Technology
Figure 3 describes the vehicle occupancy counting system
formulated as a CV problem. The front and rear images are
passed through two separate processing streams whose results
are combined to obtain the HOV decision. Both these streams
have ROI extraction and classification (human counting) mod-
ules in common. Each of these modules are explained in the
following subsections.

(a) vehicle 1 (b) vehicle 2

Figure 4: Comparison of ROI detection by YOLOv3 (top)
and DPM (bottom). Clearly, the DPM based method fails.

ROI Detection
As previously mentioned, ROI extraction is a necessary step
before classification. We evaluate the performance of DPM
and YOLOv3 on images from a particular day without any
image pre-processing (crop, rotation or scaling). We found
that DPM was able to find the correct ROIs in 52% of the

cases, while YOLOv3 was correct in more than 96% cases.
The correctness of ROIs was determined based on an Inter-
section Over Union (IOU) threshold with the ground truth
labels. Further, forward pass on YOLOv3 is 10 times faster
than on DPM. Figure 4 depicts that YOLOv3 detects the
windshields accurately despite the presence of other similar
entities like sunroofs, which in the case of DPM have to be
removed manually by fine-tuning preprocessing parameters
for each camera. This was one of the main drawbacks of the
solution proposed in (Wshah et al. 2016). Even after man-
ual parameter tuning, the detection accuracy of DPM based
models is lesser than YOLOv3. Thus, YOLOv3 is better for
real-time applications like transportation in terms of both
time and accuracy.

Person Counting

The passengers in a vehicle can be divided into front and rear
seat occupants. ROIs extracted for each view are processed
by two separate CNNs. The front row can contain only one
person apart from the driver, thus the problem turns into
a binary classification of presence/absence of a passenger
along with the driver. We use GoogleNet in conjunction with
YOLOv3 for this task which gives an accuracy of more than
97%. Our method is a significant improvement over the DPM-
enabled classifier which has an accuracy of 94.6% in the best
case.

The side image classification is a more challenging task
because of several reasons. First, it is a four-class classifica-
tion problem since the number of passengers can range from
zero to three. However, for HOV3+ predictions, three classes
(zero, one and more than one classes) would suffice. Second,
a heavily skewed dataset results in a bias in predictions. The
rear seats are empty in 66.63% of cases, has one occupant
22% of the times, while it has more than one occupant in
only 11.37% cases. Finally, since the images are from the
side, the passengers are quite susceptible to occlusion by one
another. These challenges result in errors and demand an
AI-engine robust to such externalities. Thus, we evaluated
three popular CNN architectures viz. GoogleNet (Szegedy et
al. 2015), ResNet (He et al. 2016) and VGGNet (Simonyan
and Zisserman 2014) after oversampling class 1 (1 passenger)
and class 2 (2 or more passengers) to match the number of
samples in class 0 (no passenger). The front and rear counts
obtained from their respective deep CNNs are added to get
an estimate of occupancy of a vehicle.
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Application Use and Payoff
According to the global traffic survey (inr 2017), drivers in
New York spent 91 peak hours stuck in traffic. This traffic
congestion will cost an average $100 billion over the next
five years. HOV lanes minimize the delay caused due to
traffic congestion by promoting car pooling and hence reduce
the number of cars on the highway. These lanes reduce the
average travel time by 70% for vehicles moving on HOV
lanes. Additionally, for vehicles on the usual lanes the delay
reduces by 50%. Further, the cars which have less number
of people can still take HOV lanes during congestion by
paying a toll. In fact, 33% of vehicles choose to use HOV
lanes. The automated vehicle occupancy counting system
as described in this paper proves to be extremely effective
for non-intervening functioning for huge volumes of traffic
flowing across the highways throughout the day all round the
year with negligible maintenance.

Model Precision Recall Accuracy Group
Accuracy

Deep Classification Models
ResNet-50 83.27 77.27 92.57 84.73
VGG-16 88.58 85.29 95.01 88.32

GoogleNet 89.01 83.66 94.82 88.68
Person Detection Models

YOLOv3 87.20 77.93 93.50 86.20

Table 1: Performance comparison (in percentage) of different
counting models - HOV3+ and group . (front + rear)

Table 1 shows the results of using different CNNs on the
person counting task. In addition to the standard precision,
recall and accuracy, we also report the group accuracy. Group
accuracy is calculated when individually both the front and
rear passengers are counted correctly by the nets rather than
the total count of HOV3+ violators or non-violators.

The system’s performance over the day is fairly constant
and in the range of 94% to 96% accuracy. There is a relative
drop in performance during noon and early-night hours. The
former can be attributed to significant glare present due to the
sun which hinders the visibility of human faces, especially in
the front window. The latter variation can be safely ignored
as the results are within margin of error and the traffic volume
falls considerably post 9 PM.

We evaluated the time based performance of the three
models as well. ResNet-50 takes 55 ms per image, VGG-16
takes 26 ms per image and GoogleNet takes 15 ms per image
on a GPU. Our proposed system based on GoogleNet takes
much less time per image than VGG-16. This in conjunction
with the high accuracy achieved (Table 1) demonstrate the
effectiveness of the overall system. The numerical figures
corroborate our claim of fast processing without compromis-
ing on accuracy of decision. Thus the proposed system is
efficient for high traffic flow.

The variation in system level accuracy and yield in terms
of the system confidence threshold can be observed in Fig-
ure 5. The system level confidence is formulated using the
individual front and side GoogleNet classifier confidences.

This trend facilitates the use of decision threshold as a design
parameter to obtain a better violator detection rate in terms of
accuracy. This also caters to the transportation agency to have
control over the false positive rate (non-violators detected
as violators) of the system. The increasing trend of accuracy
with respect to the confidence threshold also illustrates the
correctness of the classifier confidence. On the other hand
the yield curve acts as another system performance measure
showcasing the fraction of vehicles classified for varying
confidence thresholds.

Table 2 shows the precision, recall and accuracy achieved
by three classification CNNs and YOLOv3 as a person de-
tection system on the side images. The overall accuracy of
rear classification is highest for GoogleNet. The count in the
case of rear images is less accurate compared to the front
images since the CNN gets confused between the images
with one versus more than one person sitting in the back due
to occlusion. This is confirmed by the visualization of the
features learned by GoogleNet for the rear classification task
which is shown in Figure 5d. The blue cluster corresponding
to empty seats is well-separated from the highly overlapping
red and green clusters. This depicts the high accuracy in de-
tecting the presence/absence of a person by the AI model.
However, it gets confused in demarcation between one or
more passengers owing to significant occlusion when seen
from side.

Model Precision Recall Accuracy
Deep Classification Models

ResNet-50 72.21 71.46 86.87
VGG-16 81.22 79.35 91.04

GoogleNet 81.60 79.32 91.08
Person Detection Models

YOLOv3 79.92 72.77 88.40

Table 2: Performance comparison of the models for the rear
passenger count (in percentage)

In addition, we also plot the yield versus accuracy curve
for the rear classification models in Figure 5c. It is consistent
with the table 2 that GoogleNet is more accurate in counting
people than VGGNet and ResNet for the same yield.

The proposed system is very robust to certain factors that
we showcase. The rear seat looks empty in Figure 6a, but his-
togram equalization shows a baby on a safety seat in Figure
6b. The baby passenger, although not visible to human eyes,
is correctly identified as one person by the system.

The performance of the system is slightly affected in the
presence of infants in the rear seat, as they are often occluded
by the safety carrier. Given the ambiguity in the presence of a
child, as shown in Figure 6c, we labelled such data containing
only a safety carrier as “No occupant”. However, whenever
the child is partially visible, the system correctly recognizes
him/her as a person as in Figure 6d. Various other scenarios
shown in Figure 7 like a cat present at the back (0 person),
occlusion of face, only hair of a passenger being visible
or pose variation which lead to failure of manual counting
process, are efficiently handled by VPDS with high accuracy.
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Figure 5: Variation of accuracy and yield of VPDS with threshold on Confidence Score for (a) HOV3+ and (b) Non-HOV3+
predictions. The final confidence score is obtained by multiplying the softmax output of front and the rear classifier. (c) Yield vs
Accuracy curve for the rear passenger counting using three popular CNN architectures. (d) A 3-D t-SNE plot of GoogleNet
features for the rear classification task. The plot shows the effect of occlusion on the decision made by GoogleNet.

(a) (b) (c) (d)

Figure 6: Effect of Tint and Illumination: (a) Tinted window
(b) Histogram equalized. Child-safety seats: (c) Occluded (d)
Non-occluded

Figure 7: (a) No Person (b) Two Persons (c) Two Persons
(d) Two Persons. Corner cases correctly predicted by VPDS.
Faces have been redacted to preserve privacy.

Application Development, Deployment and
Maintenance

We use a database of around 35000 raw images of front and
rear views of vehicles. This dataset is then split randomly
into 3 sets - train, validation and test which contain roughly
24000, 4000 and 7000 images respectively. The train set
images are shown to the network while the validation set is
used to do the model selection. We evaluate the performance
of the model on the test set. We trained our models on an
NVIDIA Tesla K80 GPU. We used DarkNet and Caffe for
training YOLOv3 and the classifier models respectively.

VPDS has been deployed at more than three sites and
functions efficiently at a very high accuracy. The system can
be tuned based on the site requirements for more sensitive
violator detection or less sensitive non-violator ticketing. The
system has been successful in ticketing the 80% of violators
arising from the voluntary compliance system and proved
very beneficial for the transportation law enforcement agen-
cies. VPDS requires a one time installation of the imaging
equipment at the site. The images from the site are collected
and a site-specific model is trained to achieve the best pos-
sible accuracy. Once the training is done there is minimal
or no requirement of any intervention at the site except in

the rare event of any hardware failure. The local AI process-
ing station is also configured one time and does not require
monitoring except during a system upgrade. Also, the images
collected during the process can be backed up elsewhere to
avoid flooding the processing server.

Conclusion and Future Work
The reliability of voluntary compliance is questionable as
studies have shown that 80% of the vehicles in an unmon-
itored HOV lane are in violation of the law. With the ever
spreading urban sprawl and an overwhelming dependency of
US cities on automobiles, decongestion is one of the highest
priorities. We have developed VPDS, an AI based vehicle
passenger detection system to effectively enforce HOV/HOT
lane movement. VPDS automates and improves identification
of HOV violators and assigns fines and tolls to HOV lane
users. Moreover, it is extremely fast and takes less than 2s
for classifying a vehicle as a violator or a non-violator with
96% accuracy without thwarting the normal traffic flow and
using minimal hardware. Over a period of 2 years during
which VPDS was deployed at three different sites, it has
served approximately 30 million passengers. Serving roughly
1800 vehicles in morning and 2300 vehicles in the evening
rush hours at one particular site, VPDS achieved an accuracy
between 94-96% irrespective of the traffic flow or time of
the day. This exemplifies an AI-based system which is highly
accurate, consistent, fast, responsive in real-time, robust to
externalities and requires little maintenance. In future, we
aim to further improve the efficiency of VPDS by exploring
recent advancements in object detection methods for better
ROI detection and more powerful neural architectures for bet-
ter classification. We also envision to make a holistic system
with vehicle type identification as a sub-module working in
conjugation with VPDS to automatically generate toll/fine
so that congestion and violation management happen in a
seamless manner.
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