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Abstract

Degraded communications are expected in large-scale disas-
ter response and military operations, which nevertheless re-
quire rapid, concerted actions by distributed decision makers,
each with limited visibility into the changing situation and in
charge of a limited set of resources. We describe LAPLATA,
a novel architecture that addresses these challenges by sepa-
rating mission planning from allocation/scheduling for scala-
bility but at the cost of some negotiation. We describe formal
algorithms that achieve near-optimal performance according
to mission completion percentage and subject matter expert
review: assumption-based planning and replanning, profile-
assisted cooperative allocation, and schedule negotiation. We
validate our approach on a realistic problem specification and
compare results against subject matter expert solutions.

Introduction
In the U.S. Air Force, Decentralized Command and Con-
trol (C2) of large-scale, multi-day air operation campaigns
(Hostage III and Broadwell Jr. 2014) follow the tenet of cen-
tralized control and decentralized execution. Recent events
have led to an emphasis of decentralized C2, where commu-
nications links among forward planning and execution nodes
are either interrupted by natural disaster or an adversary ca-
pable of communications denial, e.g., extensive jamming. If
forward nodes were to wait for communications to be re-
established, they would miss critical time windows. It is dur-
ing these moments that decentralized control, not traditional
centralized control, provides a resilient C2 architecture that
maintains the initiative in the contested environment.

Existing distributed and multi-agent planning systems
(Torreño et al. 2017) typically focus on deterministic plan-
ning methods that distribute the input planning task among
multiple agents. Decentralized C2 mission planning must in-
volve independent planners and reasoners that are responsi-
ble for accomplishing different tasks under large-scale un-
certainty, while communicating and coordinating their out-
comes. Under severely degraded communications, mission
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planning, resource allocation, and scheduling may not con-
verge to an optimal or even attainable solution. The large
scale (a thousand missions per day), the dependencies be-
tween distributed decisions, and the high degree of config-
urability of resources exacerbate the plan optimization chal-
lenge. These planners must also operate under assumptions
about peer decisions as resource allocation and scheduling
cannot be modeled as finite, logical formalisms. On the other
hand, decentralized multi-agent systems (Seuken and Zil-
berstein 2008) address partial-observability and uncertainty
during planning, but these approaches cannot scale up to
large-scale C2 operations and use closed-world formalisms.

We describe LAPLATA (Living Air Operations Planning
Triggered by Assessment), a novel service-oriented system
designed and being developed for emerging decentralized
C2 applications. LAPLATA employs decentralized planning,
plan coordination, adaptation, critiquing and distributed re-
source scheduling and allocation to address the challenges
of decentralized C2. Our contributions are as follows —
• We describe our LAPLATA architecture for rapid plan

adaptation at multiple layers (i.e., tasks, actions, re-
sources, and schedules for them) with minimal ripple ef-
fects. We discuss how our loosely-coupled approach to
planning and allocation/scheduling negotiation results in
termination under decentralized uncertainty.

• We describe LAPLATA’s novel assumption-based, decen-
tralized hierarchical task network planning framework,
called APA, that uniquely combines our plan genera-
tion, adaptation, and critiquing algorithms. APA manages
assumptions about imperfect knowledge of dynamic de-
mand, temporal information, and distributed constraints.

• We describe how LAPLATA uses proxy knowledge to in-
form assumptions and estimate the status of the world
and decisions at peer nodes in a decentralized auction-
based resource allocation algorithm, called GAO. GAO
performs global, dynamic, and distributed resource allo-
cation under conditions of oversubscribed resources and
potentially combinatorial number of scheduling options.

• We present our experimental evaluation and results that
demonstrate the scalability and effectiveness of our ap-
proach for air campaigns and compare LAPLATA solu-
tions to those from subject matter experts. We evaluated
LAPLATA over several metrics, including planning run
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Figure 1: LAPLATA architecture.

times, scheduling and allocation success rate, and quality
improvement percentages due to planning and allocation
negotiations.

LAPLATA Architecture
According to the U.S. Department of Defense Dictionary of
Military and Associated Terms, Command and Control (C2)
is “the exercise of authority and direction by a properly des-
ignated commander over assigned and attached forces in the
accomplishment of the mission.” Thus, the two essential ele-
ments are, first, a commander who has the authority to assign
missions and direct forces to accomplish them, and second,
a system through which the commander can communicate
with his or her forces and control their actions to achieve that
mission. This paper focuses on the latter requirement and de-
scribes our novel decentralized C2 system, called LAPLATA,
for military air operations.

Traditionally, C2 systems are centralized and have unitary
allocation of decisions, resource allocations, constrained
patterns of interaction, and tightly-controlled information
flows. LAPLATA allows for a variable number of C2 nodes
connected by a tactical cloud (not described here), which
performs best effort status-sharing between nodes. Figure
1 shows the high-level illustration of our LAPLATA archi-
tecture. In LAPLATA, each C2 node contains an AIR PLAN
ADAPTATION (APA) component for task planning and a
GLOBAL ASSET OPTIMIZATION (GAO) component for re-
source allocation and scheduling. An Assessment Trigger
component (not described here) interprets changing world
and resource status and triggers plan adaptation.

The initial state of LAPLATA specifies a summary of
available resources (e.g., available aircraft, sorties, sortie
times and bases, and so on). With this input, LAPLATA’s
APA component starts planning a set of mission tasks, such
as strikes against a set of targets and supporting tasks. Sup-
porting tasks notably include Suppression of Enemy Air De-
fenses (SEAD) tasks, required for strike missions that do
not have sufficient protection from adversary air defenses
and, thus, must have a SEAD escort. Each mission speci-
fies well-defined requirements (i.e., constraints) on the task.
For example, a strike mission task is always associated with
a start and end time as well as whether a stealth-capable
SEAD escort is required or not. In addition to constraints

on the mission task, each mission target can also specify
time constraints for striking that specific target in the mis-
sion, geospatial constraints for the strike around the target,
the level of any possible adversarial threat around the target,
and the importance of that target within the mission.

Planned tasks identify options for specific capabilities to
be used by the resources (i.e., specific aircraft types and
configurations) and time windows for task execution. These
tasks are then handed to GAO for allocation and scheduling.
GAO receives from the Tactical Cloud detailed schedules of
resource availability and available resource configurations
at all C2 nodes, which it converts to profiles: histograms of
availability over time. Resources are only available at cer-
tain periodic time intervals. The GAOs at all C2 nodes col-
laborate on (approximately) optimally allocating tasks to re-
sources. GAOs will use resource profiles of peer C2 nodes
to infer when other nodes can supply resources for tasks that
cannot be fully allocated with local resources alone.

The output of GAO is a selection among the possible op-
tions and time windows for the successful execution of a
mission. If GAO cannot allocate a resource to a task in the
requested time window, it looks for and suggests to APA an
alternate time window. APA then attempts to replan the task
for the suggested time. Once primary tasks are allocated,
APA creates the supporting tasks and requests allocation for
them. APA postpones tasks for which required supporting
tasks cannot be resourced to the next planning period, e.g.,
the next day.

The planning, adaptation, and allocation cycles converge
when there are no mission tasks to be adapted by LAPLATA.
The final output for the planning period is a list of mission
tasks with their assigned resources for allocation.

LAPLATA Algorithms
Assumption-based, Decentralized Planning
LAPLATA’s AIR PLAN ADAPTATION (APA) module is
used to build, extend, and repair plans in response to new
goals, user input, new situation/plan assessment informa-
tion, or plan failure. APA is a loosely-coupled service ar-
chitecture that provides the following basic planning ser-
vices to achieve its assumption-based decentralized plan-
ning capability: (1) hierarchical planning, (2) plan critiquing
via counter planning, and (3) dynamic plan repair. We have
described our basic formalisms and approach in APA in
(Kuter, Goldman, and Hamell 2018); we summarize those
details here and describe our recent work.

Figure 2 shows a high-level description of APA. APA
is built on the widely-used SHOP2 system1 for generalized
Hierarchical Task Network (HTN) planning (Erol, Hendler,
and Nau 1994; Nau et al. 2003; Goldman 2006). SHOP2 is a
modern, general-purpose and scalable HTN planner that has
performed well in a broad range of applications (e.g., (Nau
et al. 2005; Musliner et al. 2011; Kuter et al. 2015)). Build-
ing on SHOP2, APA provides predictability in decentralized
planning across planning agents. HTN models seamlessly
include planning information of other agents for planning

1https://sourceforge.net/projects/shop/files/SHOP2
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Figure 2: A high-level description of APA functional archi-
tecture.

and plan adaptation purposes. Local instances of APA mod-
ify fully specified plans by revisiting branching decisions at
the most effective and least disruptive point in the hierarchy.

In Figure 2, SHOP2 is responsible for localized planning
tasks. Planning agents (i.e., SHOP2 instances) coordinate
their behaviors without communication by making assump-
tions about the constraints and goals of their peers in addi-
tion to using their own local planning constraints. These as-
sumptions provides boundaries to a planning agent’s space
of plans. In APA, SHOP2 not only generates a solution plan
(i.e., a sequence of actions) for a given desired task to be ac-
complished but it also generates a task-based plan rationale
for that solution. The latter is based on the concept of a solu-
tion plan-tree in plan recognition (Geib and Goldman 2009)
or in game-tree search (Russell and Norvig 2003).

A less viable alternative would be to constantly trade
plans, constraints and negotiations among peers. For
LAPLATA, this has the major disadvantage of requiring con-
stant, reliable communications among the planning agents.
Furthermore, planning will deteriorate into a “lock-step”
condition, in which decentralized planners must reason at
the same time about the state of every other agent, negating
many advantages of decentralized planning. Another option
is for a planning agent to generate a plan, send it to the next
agent in the pipeline, and so forth. This is less efficient and
less robust because decentralized planning is not truly par-
allel and distributed. In highly complex and dynamic chal-
lenges facing LAPLATA, this approach would be the worst:
it would require backtracking over every agent’s plans.

Plan critiquing via counter-planning uses planning tech-
niques to try to break plans, triggering replanning to gen-
erate more robust plans that avoid vulnerabilities identi-
fied. Brittle plans may fail catastrophically, causing mission
losses, and even minor failures may result in users losing
faith in the system. Even if the system’s plan is probabilisti-
cally the best, conditions may be encountered where the plan
will break. To avoid such foreseeable, though unlikely, con-
ditions APA uses Murphy counterplanning methods (Gold-
man, Kuter, and Schneider 2012) that attempt to “break”
plans using models of potential plan contingencies (distur-
bances, in control-theoretic terms). Murphy can use any au-

tomated planning system to identify ways in which distur-
bances could cause the plan to fail in execution, and pro-
duce counterexample traces that demonstrate how failures
could occur. Automated and human planners can use these
traces as guidance in improving their plans. In that, Murphy
is a planning analog to the use of model-checking systems
to verify critical hardware and software systems.

Once Murphy produces probabilistic counterexamples for
a plan, APA aggregates those counter examples into a prob-
abilistic causal model, a directed graph in which each node
represents an event (i.e., plan actions and uncontrolled con-
tingency events) that may or may not occur (Lemmer and
Gossink 2004; Kuter et al. 2004). By performing belief up-
dates over the probabilistic causal models, APA revises the
probability that an assumption is true, i.e., its confidence in
that assumption, by probabilistically reasoning over Mur-
phy’s counter examples represented in the graphical model.
If the confidence in an assumption drops below a given
threshold, APA generates a discrepancy as the logically-
negated condition of that assumption. This triggers plan
adaptation in order to repair the plan and its rationale (i.e.,
the hierarchical plan tree). APA’s plan adaptation is driven
by the causal links the planner generates between tasks gen-
erated and decomposed during planning. In particular, APA
traces the discrepancy to earliest task over the plan and the
plan hierarchy by using the causal links in the plan hierar-
chy and starts to repair the subtree that is rooted at that task.
Repairing that task may generate cascading conflicts to the
assumptions in the rest of the original plan and APA recur-
sively repairs those conflicts until a causally-sound plan is
produced again.

Profile-assisted Cooperative Allocation
GLOBAL ASSET OPTIMIZATION (GAO) receives resourc-
ing requests from APA and allocates resources to these tasks
using a market-based optimization algorithm. Each GAO
hosts an auctioneer agent which controls a number of lo-
cal resource agents. Each resource agent represents an asset,
e.g., an aircraft. When the auctioneer agent receives the tasks
planned by its local APA planner, it attempts to optimally al-
locate the local assets it controls to these tasks. Optimization
considers the priority of the task, the cost of the agent, and a
number of soft constraints that express preferences.

Due to resource limitations and due to potential temporal
misalignment between task requests and resource availabil-
ity, some tasks remain unallocated. In this case, a GAO will
first collaborate with other auctioneers to see if it is possible
to borrow some of their assets and, failing that, will suggest
an alternate time for the task. This is illustrated in Figure 3.

Each GAO will select one of its peers to ask for help if
it failed to satisfy all the requests. The selection is based on
the profiles of its peers that summarize their resource avail-
ability to maximize the chance that the task is eventually
allocated while minimizing the number of requests flowing
through the network. Note that the allocation of local tasks
are not committed until the GAO has received requests from
its peers, and the GAO will withdraw an asset from one of
its own tasks when a high priority task from a peer GAO is
received, since global optimal allocation provides the high-
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est revenue. While this process causes some iteration, the
ordering of tasks induced by their priority, which largely de-
termines task reward, ensures that the algorithm terminates
quickly. Finally, if there are tasks left unallocated after this
step, GAO will generate and suggest to APA alternative
time windows that one of its assets can accommodate.

Our winner determination (WD) algorithm, realized via
greedy optimization for scalability, provides fine-grained,
many-agent-to-many-task combinatorial allocation of the
asset’s capabilities to the capabilities required by the tasks.
Our WD algorithm allocates tasks in coherent bundles to
avoid infeasible solutions and enforces both hard and soft
constraints. Hard constraints enforce task dependencies and
temporal and spatial task requirements. Soft constraints
honor task priorities, spare assets for anticipated future pop-
up tasks, and minimize ripple effects of allocation changes.
Our WD algorithm keeps track of expendable resources,
such as munitions, across tasks assigned to a single asset. It
allocates shareable resources, such as communications chan-
nels. It considers all options for configurable resources, such
as aircraft with different munitions load-outs.

Because agents are cooperative, bid their true costs, and
reward functions and capacities are globally known, the op-
timization performed by the auctioneer yields the benefits
of Expressive Bidding and Allocation (Sandholm 2007), in-
cluding reduced exposure risk, capability bundling, and side
(capacity) constraints for bidders (resource agents). For ex-
ample, the auctioneer will reduce the agent’s cost when as-
signing the second of a pair of collocated tasks.

Figure 3: Distributed Resource Allocation and Scheduling:
GAOs maintain profiles of peer GAO resource availability
and selectively delegate task requirements to available peers.

Collaboration among peer GAOs increases global asset
utilization. Borrowing assets from other GAOs is based on
profiles each GAO maintains of other GAOs’ assets. Static
profiles are histograms of the asset types and their availabil-
ity derived from the unit contracts of the C2 nodes. A unit
contract specifies how may assets of each type are available
and during which time intervals. Every GAO has a profile,
pgi , for each peer gi.

Definitions: The static asset profile for GAO i is pgi =
{h1

gi , h
2
g+i, . . . , h

N
gi} with N the number of asset types.

hj
gi = {hj,1

gi , h
j,2
gi , . . . , h

j,24
gi } is a histogram built from the

unit contracts of the given asset type j during a 24-hour pe-
riod, our current planning horizon. The profile of asset re-

quirements for each objective ti is pti = {h1
ti , h

2
ti , . . . , h

N
ti }.

The GAO, g∗ from which a GAO will attempt to borrow as-
sets for ti is calculated as

argmax
gk

{
N∑
j=1

hj
gk
· hj

ti}

Every GAO has a profile, pgi , for each peer gi. The profile
gives the auctioneer high level knowledge of the peer GAOs
despite the communication-challenged environment. When-
ever communications are available, the GAOs communicate
and update the profiles.

With static profiles it is likely that not all requests are sat-
isfied by the selected peer GAO, because profiles do not take
local demand for assets into account and may be out of date.
In these cases, the peer passes the request to another GAO,
and bookkeeping ensures that any GAO is asked at most
once to allocate a task, which ensures process termination.
In parallel, each GAO which fails to allocate the task at-
tempts to suggest a different, feasible time slot. Thus, some
overhead effort is expended on unsuccessful requests and on
unnecessary alternative time suggestions, but in practice, the
overhead is very small compared to the productive requests.

Experiments
The complexity of our domain precludes meaningful com-
parison to published results on standard research problems.
Instead, we analyze performance of our system under vary-
ing conditions and demonstrate the performance improve-
ments due to negotiation between the APA planner and the
GAO allocator/scheduler.

In our experiments LAPLATA plans and schedules aircraft
sorties (individual flights) for each day of up to three days in
advance, given a set of prioritized tasks and threats. Our sub-
ject matter experts tailored a realistic scenario to stress the
LaPlata capabilities. Threats in close geographic proximity
to task objectives require synchronized supporting tasks to
be added and resourced. We vary four configuration items:
the number of C2 nodes (from 2 to 4), the communications
bandwidth between nodes (100Mb/s to 56 kb/s), the number
of targets (from 24 to 250), and the number and variety of
resources and their possible configurations (just enough, too
few, or too many resources required for the set of tasks).

Metrics include % of input tasks planned, resourced,
and scheduled and the processing time required. Failure to
schedule occurs when no asset is available during the re-
quested time. Resource scheduling is constrained by the task
execution window (typically four hours) and by a window
(typically 1/2 hour) for the start of asset use (the asset can
be used for longer, but it can only start the task within a nar-
row window). We inspect whether LAPLATA preferentially
resourced high priority tasks, and this was found to be true
for all experiments.

Our first set of experiments reveals the sensitivity of
our approach to configuration variations and to serve as a
baseline for enhancements. Figure 4 shows baseline results
where APA and GAO do not iterate over requested task
times. As expected, scheduling success rate (%) depends

9507



(a) Scheduling success % by number of tasks versus num-
ber of resources, averaged over the number of C2 nodes and
comms conditions.

(b) Scheduling success % by number of C2 nodes versus
comms conditions averaged over task and asset numbers.

Figure 4: Baseline task allocation success. Number of tasks:
A: 150, B: 158, C: 250; Number of sorties (combined strike
and SEAD): 1: 194, 2: 146, 3: 128, 4: 113; Comms Condi-
tions: 1 = 100Mb/s, 2 = 1 Mb/s, 3 = 56kb/s.

strongly on the number of tasks and the available assets (Fig-
ure 4a). The roughly 50% scheduling success rate is due to
time mismatches between requests and availability, caused
by the separation of planning and scheduling and the lack of
negotiation between APA and GAO to revise the requested
time windows. When more tasks are planned with the same
number of assets, scheduling success falls further, as ex-
pected.

Figure 4b shows that scheduling sensitivity to bandwidth
constraints down to 56Kb/s is very low, attesting to the min-
imal communication needs of our approach. Overall, pro-
cessing time increases with lower bandwidth and with larger
numbers of nodes (Figure 5). We observe near-constant time
of the APA Strike task generation step (blue), as the speed
up due to additional planning nodes is offset by inter-APA
coordination. For SEAD task planning, coordination over-

Figure 5: Processing times for planning and scheduling
strike and SEAD tasks with two and four C2 nodes and
100Mb/s and 56kb/s comms conditions.

Percentage Scheduled of 24 Tasks

Individual Experiment Runs and Average

Figure 6: Scheduling success % improves with schedule ne-
gotiation between APA and GAO, shown here for a small,
24 task scenario.

Percentage Scheduled of 141 Tasks on 4 
Nodes

Individual Experiment Runs and Average

Figure 7: Scheduling success % improvement on a 141 task
scenario, equivalent to case A in the baseline experiments.

head dominates, since SEAD tasks support multiple strike
tasks being planned by all of the nodes. Thus, SEAD task
planning time (gray) increases with the number of nodes and
significantly increases with lower bandwidth communica-
tions. GAO processing times (orange and yellow) are domi-
nated by the additional processing time to service peer GAO
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requests, especially when the number of nodes increases.
Figure 6 shows results for a set of resources that are ex-

actly sufficient for the task needs, and where APA and GAO
iterate over requested task times. In this experiment, we
varied the number of interactions between APA and GAO
when scheduling task varies. The scheduling success rate
improves significantly move from 1 to 2 rounds of interac-
tions, though increasing to 3 rounds of interactions yielded
only slight improvements over 2 rounds. As before, schedul-
ing success is insensitive to communications conditions,
and, in this case, also the number of nodes. Figure 7 shows
similar success rates for a larger, 141 task scenario

Relatively large variations between runs of the same con-
figuration are due to a combination of factors: the tasks are
stored as an unordered collection and, thus, are received in
random order by LAPLATA; timing of the allocation requests
depends on the number of targets and varies; and the greedy
optimization in the GAO allocator is sensitive to the order in
which request arrive. GAO is designed for rapid, incremen-
tal allocation changes, but we avoid, for now, changes that
affect schedules that have been committed and communi-
cated to APA and which would require replanning by APA,
except when the task list changes via external input.

Conclusions and Future Work
We have developed an effective and efficient architecture
and set of planning, allocation, and scheduling algorithms
for a problem whose realistic complexity exceeds what ap-
proaches reported in the literature can handle. We have
shown decentralized planning and scheduling to be resilient
to extreme bandwidth constraints. Profile-assisted, cooper-
ative allocation and scheduling improves on hierarchical
auction approaches under communications denial, since it
uses fewer messages and does not require a full auction
among auctioneers. It is also more robust to communica-
tions disruptions than distributed winner determination auc-
tions (consensus protocols), since it does not require multi-
ple rounds of negotiations.

Future work will include scaling the algorithms to plan
and schedule 1000 tasks per day, e.g., increasing the effi-
ciency of planning and plan repair search. Another enhance-
ment will be to enable assets to team up in the bidding stage
and, instead of bidding separately, jointly bid for interdepen-
dent supported and supporting tasks. Joint bids promise to
increase efficiency and reduce iterations between APA and
GAO, since bids from multiple assets are pre-coordinated.
This avoids the case where a supported task is allocated but
has to be canceled because its required supporting task can-
not be scheduled.

Another enhancement will be to make GAOs’ peer pro-
files dynamic. The current method only considers nominal
asset availability under the implicit assumption that some of
these assets will remain available. The dynamic method will
use actual, when known, or assumed demand on assets held
by peer GAOs into account.

Finally, it will be important to consider how to explain
LAPLATA’s planning and scheduling rationale to a human
operator and to provide means by which the operator can
adjust portions of the plan.

References
Erol, K.; Hendler, J.; and Nau, D. S. 1994. HTN planning:
Complexity and expressivity. In Proceedings AAAI.
Geib, C. W., and Goldman, R. P. 2009. A probabilistic
plan recognition algorithm based on plan tree grammars. AIJ
173(11):1101–1132.
Goldman, R. P.; Kuter, U.; and Schneider, A. 2012. Using
classical planners for plan verification and counterexample
generation. In Proceedings of AAAI Workshop on Problem
Solving Using Classical Planning.
Goldman, R. P. 2006. Durative planning in HTNs. In
ICAPS-06, 382–385.
Hostage III, G. M., and Broadwell Jr., L. R. 2014. Resilient
command and control, the need for distributed control. Joint
Force Quarterly 74.
Kuter, U.; Nau, D.; Gossink, D.; and Lemmer, J. F. 2004.
Interactive course-of-action planning using causal models.
In Proceedings of the Third International Conference on
Knowledge Systems for Coalition Operations (KSCO-2004),
37–52.
Kuter, U.; Burstein, M.; Benton, J.; Bryce, D.; Thayer, J.;
and McCoy, S. 2015. HACKAR: helpful advice for code
knowledge and attack resilience. In AAAI/IAAI-15.
Kuter, U.; Goldman, R. P.; and Hamell, J. 2018.
Assumption-based decentralized htn planning. Hierarchical
Planning 2018 9.
Lemmer, J. F., and Gossink, D. 2004. Recursive noisy-or: A
rule for estimating complex probabilistic causal interactions.
IEEE Transactions on Systems, Man, and Cybernetics, Part
B 34(6):2252–2261.
Musliner, D.; Goldman, R.; Hamell, J.; and Miller, C. 2011.
Priority-Based Playbook Tasking for Unmanned System
Teams. In Infotech@ Aerospace 2011. AIAA. 1566.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, W.;
Wu, D.; and Yaman, F. 2003. SHOP2: An HTN planning
system. JAIR 20:379–404.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Muñoz-Avila, H.;
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