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Abstract

Ischemic stroke is a leading cause of death and long-term dis-
ability that is difficult to predict reliably. Retinal fundus pho-
tography has been proposed for stroke risk assessment, due
to its non-invasiveness and the similarity between retinal and
cerebral microcirculations, with past studies claiming a cor-
relation between venular caliber and stroke risk. However, it
may be that other retinal features are more appropriate. In this
paper, extensive experiments with deep learning on six retinal
datasets are described. Feature isolation involving segmented
vascular tree images is applied to establish the effectiveness
of vessel caliber and shape alone for stroke classification, and
dataset ablation is applied to investigate model generalizabil-
ity on unseen sources. The results suggest that vessel caliber
and shape could be indicative of ischemic stroke, and source-
specific features could influence model performance.

Introduction
Ischemic stroke is an emergency medical condition charac-
terized by a reduction of blood supply to the brain due to a
blocked artery. Stroke is the fifth-leading cause of death in
the United States, accounting for over 5% of deaths, and is a
leading cause of long-term disability (Benjamin et al. 2018).
While there exist evidence-based guidelines for assessing
stroke risk, many of the recommendations involve special-
ized tests, with general population-level genetic screening
currently not recommended.

Given the widespread prevalence of ischemic stroke and
the relative inability to predict its occurrence as of the
present, it is tempting to explore other modalities for pur-
poses of stroke risk assessment. One such modality is reti-
nal imaging, which has the attraction of being a non-
invasive and cost-effective procedure that has the potential
to be broadly deployed. Further, previous studies have ob-
served correlations between vascular features and incidence
of stroke (Baker et al. 2010). With the recent successes of
deep learning in medical imaging classification tasks (Lit-
jens et al. 2017), it is only natural to ask whether this model
paradigm might also be applicable to stroke prediction.

An enduring criticism of deep neural network models
has however been their lack of interpretability, which is of
particular concern for clinical tasks (Caruana et al. 2015).
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Stroke risk prediction, as opposed to general risk factor pre-
diction, poses an additional difficulty in that images for pos-
itive cases are hard to come by. In particular, for the pur-
poses of this study, patients and images positive for ischemic
stroke could only be drawn from a single source, the Multi-
Centre Retinal Stroke (MCRS) study (De Silva et al. 2009).
This rarity of condition-specific data is not uncommon in the
medical domain. Negative data was relatively abundant, and
could be obtained from multiple sources.

However, this naturally raises a question of the trained
models: did they actually learn what they were expected to
(stroke vs. non-stroke), or did they learn something inciden-
tal? Put another way, there may be some combination of fea-
tures (e.g. ethnicity, camera characteristics, compression ar-
tifacts, etc) that coincide with the stroke-positive/negative
divide in the training data. If so, it is plausible that the
model will instead learn these non-stroke-relevant features,
especially if they happen to be more discriminative to the
deep neural network architecture. Specifically, for this stroke
prediction task, the source domain involves labeled nega-
tive data from multiple datasets, but labeled positive data
from just a single dataset. However, the desired target do-
main would involve the classification of data from multi-
ple datasets in general. Since the source and target domains
are not truly the same, a classifier trained on the source do-
main may not fully apply to data from the target domain.
This problem is known as domain shift in machine learning
(Quiñonero-Candela et al. 2009).

A standard response to domain shift would be to per-
form domain adaptation, for example through preprocessing
or transferring statistics between the source and target do-
mains (Sun, Feng, and Saenko 2016). However, in this case,
a proper evaluation of domain adaptation is not possible, be-
cause of the lack of even unlabeled positive data in the target
domain. As such, we set out to estimate possible upper and
lower performance bounds on the stroke risk prediction task,
by performing dataset ablation, to examine the sensitivity of
model performance to variance in the training datasets.

Additionally, saliency map visualizations may also be ex-
amined to verify that the model is working on plausible fea-
tures, as was done for (Poplin et al. 2018). Here, we addi-
tionally practise feature isolation, in which only the most
relevant data according to the literature, the vascular tree, is
retained. A similar idea has recently been reported for stan-
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dardizing optical coherence tomography images from dif-
ferent sources, before performing classification on the ab-
stracted segmentation map (De Fauw et al. 2018).

We believe that this experimental methodology addresses
two issues that may not have been fully appreciated in the lit-
erature. First, the performance of machine learning models
on out-of-set data is often not fully explored. In particular,
the contribution of different data subsets within the training
data may not be comprehensively analyzed. Standard cross-
validation for example attempts to assess model generaliz-
ability, but does not realistically model true out-of-set data,
since training data is collated from all sources (i.e. valida-
tion data for each cross-validation fold already contains data
from all sources). A more conservative estimate of model
generalizability is therefore obtained by explicitly training
and validating models on non-overlapping data sources.

Second, the precise attribution of clinical decision is ex-
tremely important, for clinical decision support systems to
be accepted (Shortliffe and Sepúlveda 2018). Existing end-
to-end deep neural network architectures have been widely
criticized as black boxes possibly exhibiting unexpected be-
haviour, as in the case of adversarial images. One workable
approach to counter this would then be to first identify and
isolate relevant features – in this case the retinal vascular
tree – considering domain knowledge, and utilize them as
auditable intermediate goals (Lim, Hsu, and Lee 2018). This
guarantees that model performance is obtained only from the
isolated features, rather than merely retrospectively claimed
to be such from saliency map analysis.

This case study on stroke risk prediction describes an at-
tempt to mitigate interpretability and generalizability issues
by constraining the input information available to the mod-
els, and in this manner aims to offer insights to the challenge
of establishing generalizable results in real-world medical
prediction tasks (Trucco et al. 2013).

Related Work
There exists a rich literature on the association of retinal
blood vessel features with stroke risk, motivated by simi-
larities between retinal and cerebral microcirculations. Pre-
vious studies have generally tended towards the extraction
of intermediate summary features from retinal photographs,
such as vessel caliber and nicking (Baker et al. 2010), with a
meta-analysis suggesting that wider retinal venular caliber is
related to increased risk of stroke (McGeechan et al. 2009).
Such studies depend on vessel type (artery/vein) being iden-
tified for the major vessels (Xu et al. 2018), and their mea-
surements taken with specialized software (Lau et al. 2014)
for further statistical analysis.

However, it remains uncertain whether these handpicked
summary features are in fact the most suitable for the stroke
risk prediction task. End-to-end deep learning attempts to
automate the intermediate feature selection process, and has
usually been demonstrated to yield superior performance
as compared to handpicked features. Deep neural network
models applied to retinal imaging have exhibited perfor-
mance comparable to human graders in classifying for con-
ditions such as referable diabetic retinopathy (Gulshan et al.

2016; Ting et al. 2017), as well as age-related macular de-
generation and glaucoma (Ting et al. 2017).

An important distinction between the abovementioned
classification tasks, and the stroke prediction task described
here, is that the classification tasks could be performed by
human graders. In each case, there existed well-established
visual grading guidelines against which human graders
could be trained and assessed. Therefore, it is known that
a working model should be attainable in principle, if only by
reproducing the human procedure. For example, since dia-
betic retinopathy is graded based on the presence and quan-
tity of lesions such as microaneurysms, haemorrhages and
exudates, each with their own distinct appearance, much ear-
lier work had been devoted to individually identifying and
counting such lesions, before applying the specified guide-
lines (Niemeijer et al. 2010; Lim et al. 2014).

There is in contrast no such assurance for stroke predic-
tion, from the inability of human experts to reliably diag-
nose stroke from retinal photographs, as far as is known. The
closest work on this front is then on the prediction of car-
diovascular risk factors from retinal photographs (Poplin et
al. 2018), where it was unknown beforehand whether it was
possible to deduce risk factors such as age, gender, smoking
status and body mass index solely from retinal photographs.
Using a development set – of over 1.7 million images – and a
clinical validation set drawn from the same two sources (UK
Biobank and EyePACS), the authors discovered near-perfect
predictive ability for gender, and significantly better-than-
baseline predictions for most other targeted risk factors.

Methodology
Figure 1 summarizes the preprocessing that we carried out
to standardize the input to the models. All images had their
central circular portion, corresponding to the actual retina,
detected and mapped to a 512x512 pixel template.

Figure 1: Retinal image preprocessing procedure

We mitigate for possible differences in surface appearance
between the datasets with contrast normalization. A median
filter with kernel width of 5 pixels was then applied to re-
move high-frequency camera noise and source-specific fea-
tures, which might otherwise help to distinguish between the
dataset sources. A top and bottom border of 40 pixels was
then applied to standardize the presence of borders from the
original images. These are referred to as templated images.

In addition, to investigate whether ischemic stroke could
be predicted solely based on blood vessel data, we segment
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the vascular tree (vessel mask) with a U-Net implementation
(Orobix 2016; Ronneberger, Fischer, and Brox 2015). These
are referred to as vessel images.

Model Architecture. A 19-layer VGGNet architecture (Si-
monyan and Zisserman 2015) as described in (Ting et al.
2017) was used for all experiments, with the exception of
the output layer now consisting of two nodes, representing
the stroke-positive and stroke-negative class respectively. As
such, the predicted value of the stroke-positive output node,
given an input image, can be interpreted as some measure of
stroke risk for the patient corresponding to that image. The
models were trained with a batch size of 32, base learning
rate of 0.001 and momentum of 0.9, with a step decay of
0.98 every 1000 iterations. Xavier initialization (Glorot and
Bengio 2010) of node weights was used, with preliminary
experiments suggesting that model performance is robust
as to model architecture (e.g. ResNet), usage of pretrained
model weights and training parameters.

Datasets. Table 1 shows the six retina image datasets used.
Images positive for ischemic stroke were obtained from the
MCRS study, which consisted of patients from Singapore,
Sydney and Melbourne. No negative images were available
from this study. Images negative for ischemic stroke were
drawn from five datasets: the Singapore Chinese Eye Study
dataset (SCES), the Singapore Malay Eye Study dataset
(SiMES), the Singapore Indian Eye Study dataset (SiNDI),
the Diabetic Management Programme (Melbourne) dataset
(DMPMelb) and the Singapore Prospective Study Program
dataset (SP2). The number of negative images was set to
roughly match that of the available positive images. All im-
ages thus selected were then filtered for being optic disc
(OD) centered, to ensure presence of the major vessels.

Dataset templated matched

#images
vessel pixels
mean (std.

dev)
#images

vessel pixels
mean (std.

dev)

Stroke-positive
MCRS 4528 10127 (6872) 972 9971 (1492)

Stroke-negative
SCES 1751 15160 (5959) 268 10403 (1375)

SiMES 1488 15954 (6542) 188 10231 (1414)
SiNDI 1662 15199 (6311) 238 10272 (1396)

DMPMelb 715 12156 (6337) 165 10207 (1380)
SP2 1006 13735 (5360) 206 10140 (1412)

Table 1: Datasets Summary

We observe that there is a wide variance in the appearance
of the vessel images in terms of thresholded vessel mask
density, possibly due to differences between the dataset im-
ages and the images that the U-Net segmentation model was
trained on. As such, a subset of each dataset was defined
such that the distribution of vessel mask pixels was similar,
by filtering for only vessel images with 10000±2500 ves-
sel mask pixels each. These subsets are referred to as the
matched subsets of each dataset.

Experiments
For each dataset, we split the images into a development
set, and a test set. The development set is itself split into
a training set of images that are shown to the model, and a
validation set that is used to derive early stopping and op-
erating point thresholds. Images were randomly assigned to
the training, validation and test sets, subject to the constraint
that there is no overlap at patient level. The distribution of
images is approximately 80% for the training set, 5% for the
validation set, and 15% for the test set.

Three sets of experiments were carried out on four types
of input images: all templated images (TA), templated im-
ages matched for vessel mask pixels (TM), all vessel images
(VA) and and vessel images matched for vessel mask pix-
els (VM). Data augmentation was implemented through the
random flipping and rotation of input images.

The first set of experiments (E-All) used all six datasets.
During training, stroke-positive and stroke-negative images
were sampled in equal proportion. Model performance in
terms of AUC was evaluated on the validation set every
500 iterations, and early stopping applied to limit overfitting
once marginal improvement (a change in validation AUC
of magnitude less than 0.005) had been observed over the
previous iterations. A model operating point threshold was
then picked using model performance on the validation set
to balance sensitivity and specificity. The models were then
evaluated on the test sets.

The second set of experiments (E-Split1) drew negative-
stroke training and validation images from only SCES,
SiMES and SiNDI datasets, whereas the third set of exper-
iments (E-Split2) drew negative-stroke training and valida-
tion images from only DMPMelb and SP2 datasets. These
negative-stroke subsets were chosen based on their similar
vessel pixel distributions. Both E-Split1 and E-Split2 used
stroke-positive images from the MCRS dataset.

Performance of Model for Stroke Prediction
Figure 2 shows the ROC curves for the respective models
obtained in the 3 sets of experiments. We observe that the
model from the first set of experiments trained on the tem-
plated images (E-All-TA) gives the best AUC.
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Figure 2: ROC curves for respective models
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Test Set
Exp Type All Split1 Split2 SCES SiMES SiNDI DMPMelb SP2 Validation Iter α

E-All

TA
0.972
0.890

(0.987)

0.972
0.893

(0.986)

0.972
0.880

(0.986)

0.972
0.903

(0.988)

0.972
1.000

(0.998)

0.972
0.783

(0.970)

0.972
0.703

(0.966)

0.972
1.000

(0.996)

0.921
0.923

(0.978)
14000 0.43

TM
0.993
0.827

(0.970)

0.993
0.779

(0.961)

0.993
0.914

(0.978)

0.993
0.789

(0.947)

0.993
0.931

(0.976)

0.993
0.649

(0.936)

0.993
0.808

(0.952)

0.993
1.000

(0.984)

0.840
0.821

(0.864)
11000 0.30

VA
0.818
0.729

(0.855)

0.818
0.760

(0.869)

0.818
0.641

(0.811)

0.818
0.681

(0.826)

0.818
0.955

(0.960)

0.818
0.662

(0.828)

0.818
0.406

(0.667)

0.818
0.800

(0.906)

0.667
0.663

(0.750)
15500 0.35

VM
0.753
0.611

(0.754)

0.753
0.615

(0.751)

0.753
0.603

(0.749)

0.753
0.421

(0.627)

0.753
0.828

(0.847)

0.753
0.649

(0.777)

0.753
0.423

(0.655)

0.753
0.750

(0.811)

0.700
0.643

(0.730)
6000 0.45

E-Split1

TA
0.973
0.842

(0.940)

0.973
0.921

(0.990)

0.973
0.614

(0.796)

0.973
0.926

(0.991)

0.973
1.000

(0.994)

0.973
0.842

(0.978)

0.973
0.079

(0.496)

0.973
0.973

(0.994)

0.912
0.926

(0.966)
18500 0.22

TM
0.965
0.741

(0.914)

0.965
0.798

(0.950)

0.965
0.638

(0.849)

0.965
0.816

(0.950)

0.965
0.897

(0.972)

0.965
0.703

(0.914)

0.965
0.192

(0.662)

0.965
1.000

(0.984)

0.860
0.829

(0.891)
9000 0.52

VA
0.819
0.696

(0.833)

0.819
0.760

(0.862)

0.819
0.510

(0.746)

0.819
0.739

(0.841)

0.819
0.799

(0.902)

0.819
0.746

(0.846)

0.819
0.307

(0.628)

0.819
0.647

(0.823)

0.681
0.678

(0.733)
7000 0.45

VM
0.810
0.574

(0.759)

0.810
0.625

(0.795)

0.810
0.483

(0.685)

0.810
0.316

(0.650)

0.810
1.000

(0.941)

0.810
0.649

(0.802)

0.810
0.269

(0.516)

0.810
0.656

(0.808)

0.720
0.657

(0.722)
14500 0.55

E-Split2

TA
0.995
0.485

(0.846)

0.995
0.345

(0.798)

0.995
0.884

(0.984)

0.995
0.117

(0.830)

0.995
0.960

(0.997)

0.995
0.017

(0.575)

0.995
0.792

(0.974)

0.995
0.947

(0.983)

0.968
0.988

(0.992)
7500 0.46

TM
0.979
0.463

(0.815)

0.979
0.250

(0.717)

0.979
0.845

(0.983)

0.979
0.053

(0.604)

0.979
0.793

(0.961)

0.979
0.027

(0.636)

0.979
0.885

(0.970)

0.979
0.813

(0.964)

0.960
1.000

(0.955)
7000 0.35

VA
0.840
0.579

(0.779)

0.840
0.508

(0.737)

0.840
0.785

(0.897)

0.840
0.362

(0.671)

0.840
0.924

(0.957)

0.840
0.275

(0.602)

0.840
0.584

(0.806)

0.840
0.920

(0.956)

0.782
0.798

(0.870)
16000 0.07

VM
0.697
0.673

(0.740)

0.697
0.615

(0.699)

0.697
0.776

(0.806)

0.697
0.421

(0.586)

0.697
0.931

(0.873)

0.697
0.568

(0.657)

0.697
0.654

(0.724)

0.697
0.875

(0.859)

0.720
0.714

(0.778)
17500 0.16

Table 2: Detailed Experimental Results. Sensitivity (first value), specificity (second value), and AUC (in bracket) are obtained
using the corresponding threshold α for each model.

Dataset Ablation Analysis. Table 2 gives the complete ex-
perimental results. The E-All-TA model has the best perfor-
mance with AUC ≥ 0.966. The E-Split1-TA model has good
performance on the held-out test images (AUC = 0.990).
However, performance on unseen images were mixed, with
excellent performance on SP2 (AUC = 0.994) but poor
performance on DMPMelb (AUC = 0.496). One explana-
tion could be SP2 is a Singapore-based source, the same as
SCES, SiMES and SiNDI. As such, the E-Split1-TA model
learnt to classify the negative class based on the general
features of the Singapore-based sources. Similarly, the E-
Split2-TA model gives good performance on the held-out
test images with AUC = 0.984, but performance on unseen
sources were mixed: SCES (AUC = 0.830), SiMES (AUC
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= 0.997) and SiNDI (AUC = 0.575).

Feature Isolation Analysis. We minimize the possible con-
founding influence of source-specific features by performing
feature isolation to segment the vessels. We observe that the
performances in the E-All experiments are consistent across
all datasets. For the models trained using different image
types, the overall performance was reduced from an AUC
= 0.987 for TA to AUC = 0.970 for TM, to AUC = 0.855
for VA, and finally to AUC = 0.754 for VM.

Figure 3 shows the impact of feature isolation on AUC.
Closer examination reveals that the performance loss for E-
All-TM against E-All-TA was much smaller compared to
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(a) E-All-TA (b) E-All-TM (c) E-All-VA (d) E-All-VM

(e) E-Split1-TA (f) E-Split1-TM (g) E-Split1-VA (h) E-Split1-VM

(i) E-Split2-TA (j) E-Split2-TM (k) E-Split2-VA (l) E-Split2-VM

Figure 5: Example model visualizations

that between E-All-VM and E-All-VA, suggesting that the
quantity of vessel pixels in the vessel images is indeed a dis-
tinguishing factor that should be normalized across datasets.

We also investigate the effect of feature isolation on the
generalizability of these models. Figure 4 shows the change
in AUC for seen vs. unseen data, for each set of experiments.
A smaller change in AUC indicates better generalizability
in terms of more stable model performance. In aggregate,
using vessel images produces improved generalizability, as
evidenced by the smaller values for VA/VM as compared to
TA/TM. Of particular note is the performance for the SiNDI
test set (see Table 2), which improved from 0.636 for TM,
to 0.657 for VM, despite performance being expected to be
poorer for VM compared to TM in general.

Overall, even under the feature isolation regime, the mod-
els managed to achieve an AUC of at least 0.685 for un-
seen sources (E-Split1-VM on Split2: AUC = 0.685, E-
Split2-VM on Split1: AUC = 0.699), which supports the
hypothesis that ischemic stroke might be indicated by vas-
cular data alone. We confirm this by utilizing the gradient-
weighted class activation mapping (Grad-CAM) (Selvaraju
et al. 2017) to visualize the saliency maps. Figure 5 shows
that retinal vessel appearance is involved in distinguishing
between classes.

Discussion
From the dataset ablation analysis, it was found that model
classification performance on within-set negative data was
consistently better than on out-of-set negative data, suggest-
ing that the trained models may indeed be overfitting on
characteristics unrelated to any actual features manifested
by the mechanism of stroke risk. In other words, the tem-
plated image data may exhibit environment-specific differ-
entiating features that significantly help to distinguish be-
tween the stroke-positive and stroke-negative classes.

From the feature isolation analysis, it was found that the
segmented vascular tree alone remained predictive of stroke
risk, as indicated by the medical literature. Raw classifica-
tion performance dropped for vessel images as compared to
template images, with the difference in performance plau-
sibly attributable to the additional information contained by
the template images. However, some of the features learnt
from this additional information might be environment-
specific, and not condition-specific, and therefore spurious
for stroke risk prediction. This is supported by the perfor-
mance of vessel image models generally being more stable
on out-of-set test data, in the sense of sensitivity/specificity
being closer to being balanced at the validation threshold.

The major limitation of this study pertains to the na-
ture of the datasets, in particular the availability of stroke-
positive images from only a single source. Much of the
experimental effort has therefore been expended in either
attempting to quantify its impact on model generalizabil-
ity by dataset ablation, or attempting to compensate by
minimizing the effect of non-critical appearance features
with vessel images. This issue is exacerbated by the rel-
atively small quantity of stroke-positive image data avail-
able. Previous major disease classification and risk fac-
tor prediction studies using deep neural network models
on retinal images (Gulshan et al. 2016; Ting et al. 2017;
Poplin et al. 2018) involved hundreds of thousands to mil-
lions of images, with large initial performance gains as the
quantity of training images increased (Gulshan et al. 2016).
In future work, we hope to more conclusively validate the
possibility of stroke risk prediction using a wider variety of
image data for each class, and against other methods.

Conclusion
In this paper, we have investigated the potential of deep neu-
ral network models to predict ischemic stroke, a task of con-
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siderable medical interest. Initial experiments were encour-
aging, and achieved excellent performance on the test set.
However, due to the nature of the stroke-positive images be-
ing derived from a single source, feature isolation by vas-
cular tree extraction and dataset ablation were attempted to
quantify the influence of these factors on performance. It
was found that model performance was not wholly gener-
alizable to images from unseen sources, although vessel im-
ages alone remained discriminative of ischemic stroke.
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