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Abstract

We describe the selection, implementation and online eval-
uation of two e-commerce recommender systems developed
with our partner company, Prediggo. The first one is based on
the novel method of Bayesian Variable-order Markov Mod-
eling (BVMM). The second, SSAGD, is a novel variant of
the Matrix-Factorization technique (MF), which is considered
state-of-the-art in the recommender literature.
We discuss the offline tests we carried out to select the best
MF variant, and present the results of two A/B tests per-
formed on live ecommerce websites after the deployment of
the new algorithms. Comparing the new recommenders and
Prediggo’s proprietary algorithm of Ontology Filtering, we
show that the BVMM significantly outperforms the two oth-
ers in terms of CTR and prediction speed, and leads to a
strong increase in recommendation-mediated sales. Although
MF exhibits reasonably good accuracy, the BVMM is still
significantly more accurate and avoids the high memory re-
quirements of MF. This scalability is essential for its applica-
tion in online businesses.

1 Introduction
Today, recommender systems are essential components of
commercial websites. They contribute to the sales effort by
guiding the customers to interesting products and by person-
alizing the shopping experience. At the same time, the nature
of online traffic imposes stringent time limits on the compu-
tation of recommendations. Online businesses also expect
the systems to serve a large number of customers on afford-
able infrastructures. It is thus crucial to develop algorithms
that attract the attention of the customers while remaining
efficient in computation and memory consumption.

We carried out this work in cooperation with Prediggo
SA, a start-up specializing in recommendation- and search-
solutions for e-commerce (https://www.prediggo.com/). Its
main recommendation algorithm is a particularly efficient
and scalable content-based method, the Ontology Filtering
(OF). The purpose of this research was to extend Prediggo’s
portfolio of solutions with two additional algorithms, imple-
mented in Java within its already existing framework, in or-
der to benefit from recent advances in recommender system
technology.
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The first one is a novel approach based on a Marko-
vian algorithm, the Bayesian Variable-order Markov Model
(BVMM). The second one, SSAGD, is a variant of Matrix-
Factorization (MF). The family of MF algorithms is consid-
ered the state of the art in the field of recommendation; they
thus offer a solid baseline.

We will start with a description of the three types of al-
gorithms. We then describe the offline tests we performed,
given the many variants based on MF, to develop the best
one for our purpose, resulting in SSAGD. Finally, we discuss
the live evaluations we carried in production conditions on
the websites of two of Prediggo’s customers. These exper-
iments highlight the excellent performance of the BVMM.
By contrast, we found MF to obtain smaller CTRs and to be
considerably slower as well as memory-greedy.

2 Related Work
2.1 Matrix-Factorization
Matrix-factorization is one of the most widely studied ap-
proaches to recommendation and is known to provide a very
good accuracy. Many variants of its basic method have been
developed since Sarwar et al.’s original proposal (Sarwar et
al. 2000), which relied on Singular Value Decomposition to
extract vectors of user- and item-latent preferences.

Funk (Funk 2006) pushed the idea further and avoided
the roundabout computation of a SVD by directly comput-
ing the latent coefficients through regularized gradient de-
scent. Paterek (Paterek 2007) examines a number of im-
provements over Funk’s regularized factorization. Among
them, the asymmetric SVDs, NSVD1 and NSVD2, which
appear to work quite well in practice (Pu and Faltings 2013).
We discuss the second in Section 3. Paterek also introduced
the idea of adding item- and user-biases to the latent vec-
tors (Koren, Bell, and Volinsky 2009).

Koren (Koren 2008), together with Bell (Koren and Bell
2011) developed SVD++, to incorporate several improve-
ments over the basic SVD method. Although they work with
the Netflix dataset — with implicit ratings —, they notably
observe that taking into account the implicit feedback of-
fered by the users improves the accuracy (Koren and Bell
2011). They do so by introducing variables expressing the
mere presence or absence of ratings, in a way reminiscent of
Paterek’s approach.
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The problem of implicit feedback, particularly relevant in
our case, is also tackled in (Oard and Kim 1998) and in (Hu,
Koren, and Volinsky 2008). The latter develop a model with
an additional array of 0/1-variables in order to distinguish
between the ratings of the users and the confidence we
can have in those ratings. The resulting cost-function forces
them to resort to a policy of optimization through Alternat-
ing Least Squares. A similar procedure, Alternating-Least-
Squares with Weighted-λ-Regularization, dubbed ALSWR,
has been proposed by Zhou et al. (Zhou et al. 2008), al-
though they apply it on the Netflix Dataset, with explicit rat-
ings. Both algorithms are part of the Apache Mahout library
(https://mahout.apache.org/), which we used in our prepara-
tory tests.

2.2 Ontologies
Just like MF, Ontologies are now widespread tools in the
field of recommendation (Ricci et al. 2010, passim), espe-
cially in relation with content-based methods. Noteworthy
examples discussed in the literature cover the recommenda-
tion of news (IJntema et al. 2010; Cantador, Bellogı́n, and
Castells 2008; Frasincar, Borsje, and Levering 2009), multi-
media (Juszczyszyn, Kazienko, and Musiał 2010) and com-
mercial products (Aciar et al. 2007; Lee et al. 2006).

In particular, Prediggo relies on ontologies learned
through an automated process (Schickel-Zuber 2007;
Schickel-Zuber and Faltings 2007), which avoids the costly
intervention of human experts. (Drumond and Girardi 2008)
provides an interesting overview of this topic.

2.3 Context-Trees and Sequential Models
Context-trees are tree-shaped structures used to model sets
of sequences. A large number of algorithms relying on such
structures exist in the literature (Begleiter, El-Yaniv, and
Yona 2004), often in relation with data-compression (Rissa-
nen and Langdon 1979; Rissanen 1983) and arithmetic cod-
ing (Rissanen and Langdon 1981; Cleary and Witten 1984).

Rissanen’s algorithm Context (Rissanen and Langdon
1979; Rissanen 1983) was among the first applications.
Since then, several related methods have been proposed,
such as Context-Tree Weighting (Willems, Shtarkov, and
Tjalkens 1995), Prediction by Partial Match (Cleary and
Witten 1984), Probabilistic Suffix Trees (Bejerano and Yona
2001), etc. Begleiter et al. (Begleiter, El-Yaniv, and Yona
2004) offer a valuable introduction to this topic. Besides
data-compression, context-trees have also found use in mu-
sicology (Pearce and Wiggins 2003), computational biol-
ogy (Bejerano and Yona 2001), and linguistics (Galves et
al. 2012). In particular, the Bayesian Variable-order Markov
Model (BVMM), introduced first in (Dimitrakakis 2010),
has been applied to the recommendation of online news on
several news-sites (Garcin et al. 2014).

The notion of sequence, central to the definition of
context-trees and present to some extent in all our imple-
mentations, has already been noted to be quite relevant
for recommendation (Quadrana, Cremonesi, and Jannach
2018). Interestingly, the incorporation of a sequential aspect
into an MF-framework by means of time-decaying variables
is also applied by Twardowski (Twardowski 2016).

3 Matrix-Factorization
Matrix-factorization (MF) is a popular method of preference
extraction that has received numerous applications in the
field of recommender systems. It represents an instance of
dimensionality reduction (Bobadilla et al. 2013), where the
ratings assigned by users to some items are decomposed into
vectors of latent values. Those are recombined during the
recommendation stage to estimate the scores of the unrated
items.

The training data consist of a rating-matrix R, in which
the value Ru,i at the intersection of the uth row and the ith
column expresses the utility of item i for user u. In a typical
scenario, only a small number of ratings are known for each
user, and the problem is to estimate the unknown values. The
items with the highest estimates can then be recommended.

The simplest applications of MF (Sarwar et al. 2000) de-
compose the rating-matrix through Singular-Value Decom-
position (SVD) and truncate the resulting matrices R =
USV > to keep only the K most important factors. Many
refinements over this idea of matrix-decomposition exist in
the literature. They typically decompose the original R into
two matrices of user- and item-preferences, U and V , such
that each row vector Uu embeds the tastes of one user u,
while each column vector V i corresponds to an item i. The
product UuV i yields an estimate of the utility of i for u.

The Taste component of Apache Mahout, a project of the
Apache Software Foundation, offers several MF-based rec-
ommender systems. In order to ease the selection process
and, in the end, to only have to implement the most promis-
ing algorithms, we fitted three of those into our system: The
RatingSGDFactorizer, described in the Apache docu-
mentation as a “Matrix factorization with user and item bi-
ases for rating prediction, trained with plain vanilla SGD”,
the SVDPlusPlusFactorizer, defined as “SVD++,
an enhancement of classical matrix factorization for rat-
ing prediction”, with a citation to (Koren 2008), and the
ALSWRFactorizer, which relies on “Alternating-Least-
Squares with Weighted-λ-Regularization” and “also sup-
ports the implicit feedback variant of this approach” as
in (Hu, Koren, and Volinsky 2008). RSGD thus represents
a basic version of gradient-descent factorization, similar
to (Funk 2006). The other recommenders are more sophisti-
cated methods, which we would expect to perform better.

One problem posed by online traffic, especially for
session-based recommenders, is the constantly changing
user-base. All we know about a user is the sequence of his
actions on the site. At training time, we thus create the rat-
ing matrix R by collecting all the sequences of page-views
per session logged in the past, and by extracting the sub-
sequences of length at most D > 0. Those subsequences
constitute the rows of R, with each element of a row having
a value corresponding to its chronological position in the se-
quence. We assign a value of D to the most recently visited
product, D − γ to the last but one, D − 2γ to the last but
two, etc1. The items not mentioned have a value of zero.

1After some tests, we found thatD = 15 as maximum sequence
length and γ = 0.5 gave satisfactory results.
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As a user progresses on a website, the row that matches
his browsing history will change. We use a trie to keep track
of the advance of each user and to find the corresponding
row in the matrix of user-factors. When no row matches his
current sequence s, we take the row matching the longest
suffix of s. This is similar to the policy applied in a context-
tree (Section 5).

Paterek (Paterek 2007) studied several variants of Funk’s
gradient descent algorithm (Funk 2006), among which the
so-called NSVD2. The underlying idea is to compute a fac-
torization of R through regularized gradient descent, and to
construct the coefficients of a user’s latent vector as the sums
of the corresponding coefficients of the items rated by the
user. One advantage of this method is that the vectors of the
new users can be deduced from their ratings even if they ap-
pear after the training stage.

To account for the sequential nature of the data, we also
implemented our own adaptation of NSVD2, the Sequen-
tial, Session-based, Asymetric factorization by Gradient De-
scent, or SSAGD. Since it follows Paterek’s idea, SSAGD
does not need specific user-vectors2. Each time a request for
recommendation is received, we create an estimate of the
user-vector Uu by filling each dimension with the sum of the
corresponding values in the item-matrix V for all the items
i in the browsing history s, weighted according to their posi-
tion in s: Uu =

∑
i∈s wiV

>
i . The most recent item receives

a weight w of Dγ, the last but one a weight of (D−1)γ, the
last but two (D − 2)γ, etc.

Funk’s implementation (Funk 2006) uses early stopping
to avoid overfitting. The Mahout implementations work by
reducing the learning rate λ after each iteration. In our case,
we found that we obtained better results by reducing the
learning rate each time the error rate increases. It is a well-
known property of gradient descent that the error curve
sometimes experiences bumps or spikes, that suddenly in-
crease its value. When that happens, we restore the coeffi-
cients to their previous valid values and set λ := 0.9λ before
the next iteration. Once the error rate becomes too small, we
stop the factorization altogether.

4 Ontology Filtering
Ontology Filtering (OF) (Schickel-Zuber 2007; Schickel-
Zuber and Faltings 2007) was originally conceived to pro-
vide a theoretically sound basis to the use of ontologies in
recommendation. Those ontologies, in the form of directed
acyclic graphs, are learned by the system during a training
stage run once a day over the updated catalogue. Their graph
structure defines a notion of proximity and neighbourhood
among the items (Schickel-Zuber and Faltings 2007), with
the immediate descendants of the same parent concept be-
ing closest neighbours, the items sharing a grandparent be-
ing more removed, etc.

At recommendation time, the browsing behaviour of the
users is followed by the system while they navigate on a
website. Their actions are stored into session-based profiles,
used in conjunction with a Multi-Attribute Utility function

2The initial rating matrix is constructed as described above,
with ratings decreasing with their position in the sequence.

(MAUT), which estimates the utility of a product for a user
given his profile. Each time N recommendations are re-
quested for a user, a subset of candidates is preselected by
picking the M > N nearest ontological neighbours of the
item currently considered by the user. This subset is then
ranked by MAUT, and the best items can be returned.

5 Bayesian Variable-Order Markov Models
Since Rissanen’s initial proposal (Rissanen and Langdon
1979), context-tree based algorithms have proved well
suited to handle problems of sequence prediction. The do-
main of interest of such problems consists of sequences
s ∈ I ?, i.e. ordered lists of items σ ∈ I , and their aim is to
estimate the probability P(σ|s) for any σ to follow a given s.
We describe here a particular variant of context-tree model,
the Bayesian Variable-order Markov Model (Dimitrakakis
2010), or BVMM, that has turned out to be convenient for
the task of recommendation (Garcin et al. 2014).

Given a sequence s and a dataset S made of other pre-
viously observed sequences, a rudimentary way to assess
the probability of σ to come after s would be to look into
S for the sequences identical to s, and make a count of
the items σ0, σ1, . . . found after them. One could then esti-
mate P(x = σ|s) as ≈ N(σ|s)/

∑
i N(σi|s), with N(x|s)

the number of occurrences of x after s.
It is however possible that the sequence s has never been

observed before, and cannot be found in the dataset. Since
the number of sequences is exponential in the number of
items, any realistic dataset will be quite sparse when the
number of items becomes too big. One solution is then to
use the suffixes s′ ∈ suff(s) of s that have been actually ob-
served. Those suffixes, each of which defines a context, can
be naturally arranged into a tree-shaped structure, which also
allows for their efficient retrieval. This context-tree forms
the basis of a number of algorithms, that vary in the way
they select the relevant suffixes and handle the correspond-
ing counts of items (Begleiter, El-Yaniv, and Yona 2004).

Since different suffixes of the same sequence can be fol-
lowed by different counts of items, the question arises of
which should be selected, and how the differences should
be resolved. The BVMM proceeds by aggregating the local
probabilities Psi(σ|si) computed for each suffix si of s into
a global probability P̂(σ|s).

We associate to each node nsi a weight wsi , which rep-
resents the probability that nsi be the right context to deter-
mine the next item, provided no longer suffix is the right one.
This weight can be interpreted as a stopping probability in
the search for the right suffix. Given a sequence s, we imag-
ine trying all the known suffixes, starting from the longest
and deepest in the tree up to the empty suffix at the root. The
global probabilities are then obtained by marginalization3:

P̂(σ|s) =
∑

si∈suff(s)

πsiPsi(σ|si)

with πsi = wsi

∏
−D≤j<i(1− wsj ).

3The suffixes are indexed with negative numbers from 0 at the
root to −D at the deepest leaves.
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It can be shown (Dimitrakakis 2010) that, for any item σ
and any history s, the aggregated probability can be com-
puted with the recurrence relation

P̂(σ|si+1) = wsi+1P(σ|si+1) + (1− wsi+1)P̂(σ|si)
while the weights can be updated according to

wsi,t+1
= wsi,tP(σ|si)/P̂(σ|si)

This results in the algorithm outlined in Algo. 1. If D is the
maximum length allowed for the sequences, this algorithm
can be updated in O(D) each time a σ is observed after a
sequence (Dimitrakakis 2010). It also provides the proba-
bility of the next item in O(D). If our aim is to select the
N most probable items from a set of size S (S � N ), the
recommendation will be in O(SD).

Algorithm 1 The BVMM algorithm.
s is the current context
σ is the current observed item

Learning stage:
Initialize q := 0
for each node n on s from the root to the leaf:

pn := probability of σ for n’s expert
q := wnpn + (1− wn)q
wn := wnpn/q
Update expert on n

if sσ is not in the tree then
Add a path corresponding to sσ

Recommendation stage:
for each item σi:

Initialize qi := 0
for each node n on s from the root to the leaf:

pn,i := probability of σi for n’s expert
qi := wnpn,i + (1− wn)qi

return N items with highest probability q

When applied to online recommendation (Garcin, Dim-
itrakakis, and Faltings 2013), the items σ represent web-
pages, so that each sequence recapitulates the browsing his-
tory of a user. Since the catalogue of a webshop changes
only slowly, the tree can be updated at relatively distant in-
tervals. The visits are logged in a database, and used once
a day or a few times a day to update the weights and the
experts all at once.

6 Pre-Production Tests
We thus considered six algorithms, three third-party imple-
mentations from the Mahout library: RSGD, SVD++, and
ALSWR (used in its implicit-feedback variant), and three
implementations of our own: OF, BVMM, and SSAGD. To
provide a minimal baseline, we included a trivial Random
recommender, which picks its recommendations with uni-
form probability. The implementation of the modules did not
create particular problems. Prediggo’s software, written in
Java, already uses a system of interfaces for the various poli-
cies, that can be implemented straightforwardly. The Ma-
hout libraries were wrapped inside an ad hoc module, while

SSAGD and the BVMM were implemented directly. The rat-
ing matrix in SSAGD was a sparse datastructure based on
an array of linked lists of cell objects. The factorized vectors
were originally arrays of Java doubles, later changed to
arrays of floats in order to gain space.

In order to reduce their time-complexity and ensure the
semantic relevancy of the output, we apply to all our algo-
rithms the same prefiltering operation used in OF: an initial
set of≈ 400 candidates is selected by looking within the on-
tologies for the nearest neigbours of the item currently vis-
ited. The main algorithm is then applied on those candidates
to extract the final recommendations.

We first tested all seven strategies on a dataset collected
from the traffic of one of Prediggo’s clients. Those tests were
performed offline by feeding requests for recommendations
into the system running on a local machine. The requests
reproduced the chronological unfolding of the previously
recorded series of 100,000 page-views. In each step, the sys-
tem had to return N = 5 recommendations given a visit on
a product by a given user.

Every 10,000 steps, the simulation was stopped and the
four MF recommenders and the BVMM were updated by
launching a new learning stage. Each learning stage used the
clicks previously received as training data. The clicks that
were to follow were of course not used at that moment. This
procedure is different from the more usual method of split-
ting the dataset into a training set and a testing set, since each
slice of data was first used for testing, then lumped into the
training set. Since the evaluation was always carried on data
yet unknown to the system, it nevertheless always maintains
a strict separation of testing and training data.

Figure 1: Offline tests, accuracy over 100,000 page-views.

Several options exist to assess the quality of a sequential
recommender (Quadrana, Cremonesi, and Jannach 2018).
Since we are interested in determining which of our candi-
dates will provide the best CTR when used online, we mea-
sure accuracy as the precision over N outputs: We count a
hit each time a user visits one of the items recommended in
his previous step and a miss each time he does not. We then
take the ratio of all the hits over the sum of hits and misses.

Fig. 1 shows the evolution of the accuracy of each recom-
mender across the 100,000 steps. The BVMM obtains the
best results with SSAGD and ALSWR coming second and
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Figure 2: Offline tests, recommendation times (top) and
learning times (bottom) after 100,000 page-views.

third. Fig. 2 (top) compares the mean times to compute one
recommendation in ms. The three Mahout implementations
are the slowest, while the BVMM is the fastest. SSAGD thus
stands out as the most interesting in the MF family.

The recommendation times include an overhead covering
the system’s common operations. Since the random recom-
mender has almost no work to perform on its own, its run-
time can be taken as equal to this overhead. The BVMM is
very close, due to the many opportunities for optimization
(caching, precomputing, etc.) inherent in the algorithm.

The durations of the learning stages after 100,000 page-
views (Fig. 2, bottom, in ms.) are also quite different among
the algorithms: We had to use a logarithmic scale for the
y-axis, due to the wide differences between the values. The
ALSWR in particular suffers from prohibitively high learn-
ing times. Its training over the 100,000 clicks takes a little
less than 10 hours. By contrast, SSAGD needs ≈ 8 min-
utes and the BVMM less than 1 minute. The computation of
the ontologies, dependent only on the size of the catalogue,
takes around 30 minutes.

Our implementations of MF are conceived to integrate the
sequentiality inherent in the data — the fact that the users
visit the products in sequence. This is done first, when filling
the rating-matrix in the learning stage, by giving higher rat-
ings to the most recent items. Then, in the case of SSAGD,
by also over-weighting the latent parameters of the most re-
cent items when deriving the user-vectors. Our tests showed
that after 100,000 steps, SSAGD achieved an accuray of 0.14
with only the first weighting, of 0.105 with only the second,
of 0.145 with both, and of 0.077 without any weighting. Ob-
viously, both policies contribute to the accuracy.

Our offline tests thus convinced us that the Mahout im-
plementations were not suitable for our purpose, since they
do not achieve the best accuracy and appear slower than the
other algorithms. By contrast, SSAGD is capable of good
performance and is reasonably fast. Its close variant NSVD2
is also recognized in the literature as an excellent option (Pu
and Faltings 2013). We hence selected it as representative of
MF for the online experiments we will now discuss.

7 Live Evaluations
Once the best algorithms were selected, we could start
preparing the production version of the new modules and
organize two live A/B experiments on the websites of two
of Prediggo’s customers. The first one is a retailer of fur-
niture, hightech products and home appliances, and oper-
ates a high-traffic website with a large catalogue (≈ 10,000
products). The second, a webshop offering items of youth
fashion, manages a smaller site with an average traffic and a
more specialized catalogue (≈ 1000 products). The system
would be run in the usual conditions used by Prediggo to
serve its customers through the Software as a Service (SaaS)
model. We would rely on Docker to provide a lightweight
virtualization, over machines running on Debian.

As the system was set up, we discovered however that the
usual amount of memory allocated to each instance would
not suffice. The servers were regularly crashing for lack
of RAM during the preproduction launches. Earlier exper-
iments had shown that the BVMM could run without issues
on 5 GB on the same platform as the first experiment, but
MF proved too greedy. We had to optimize the code fur-
ther and to implement a scheduling algorithm to prevent the
learning stages of MF and BVMM to occur at the same time
— this is the moment when both consume the most memory.
Even then, the learning stage of MF would still overwhelm
the system and we had to increase the maximum memory of
the JVM to 7 GB in production for the first customer. The
maximum memory was left at 4.5 GB for the second.

Figure 3: Online experiments: CTR, speed and sales.

In both experiments, the traffic was split into three buck-
ets of comparable size, one for each algorithm.≈ 34% of the
sessions received recommendations selected by the BVMM,
≈ 33% were served by OF and ≈ 33% by MF. The pages
visited by the users, their clicks, their purchases and the
recommendations they received were logged. The learning
stages of OF and MF were scheduled early every morning
when traffic is low. The rating-matrix of MF was limited to
100,000 rows, filled with the most recent sequences, and de-
composed into 100 latent factors. The context-tree was lim-
ited to a size of 100,000 nodes built out of the same data.
All three algorithms performed an initial step of ontological
preselection as described in Section 6.
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Table 1: Online experiments: Data and p-values.

1st exp. Clicks Impr. CTR (%) Sales (%)

OF 8035 6,331,286 0.127 100
BVMM 16,080 6,538,051 0.246 409.907
MF 10,807 6,314,160 0.171 152.108

OF, BVMM OF, MF BVMM, MF

p-values ≈ 0 9.23e−93 1.586e−190

2nd exp. Clicks Impr. CTR (%) Sales (%)

OF 397 144,049 0.276 100
BVMM 823 149,433 0.551 164.981
MF 749 143,510 0.522 96.090

OF, BVMM OF, MF BVMM, MF

p-values 1.27e−31 4.6e−26 0.288

7.1 First Experiment
The first experiment lasted from the 14th of March 2018
to the 1st of April 2018 and covered a total traffic made
of ≈ 19,000,000 impressions of recommendations. Tab. 1
(top) gives the number of clicks with the CTRs in percent.
The three p-values are computed through Fisher’s exact test
for each pair of algorithm. The 0-hypothesis is that they
have equivalent abilities to attract clicks. The three values
are small enough to confirm that this is not the case: The
BVMM triggers significantly more clicks than the two oth-
ers, while MF surpasses OF.

Tab. 1 also shows the amount of post-view sales (given
in percent of OF for reasons of confidentiality). The values
represent the aggregates of the purchases made by the users
after they have been shown recommendations for the cor-
responding products within 24 hours. They should be inter-
preted with caution, since recommendations can influence
purchase decisions only indirectly, among many other fac-
tors. The sample of sales registered during the experiments
was also much smaller than the number of clicks, and ex-
hibited a high variance. Additionally, the values may partly
express the capacity of the recommenders to anticipate the
purchases, not necessarily the capacity to cause them.

The mean time to generate one recommendation (Fig. 3,
middle top) was 2.282 ms for OF, 1.946 ms for the BVMM
and 4.39 ms for SSAGD. The BVMM and OF thus appear to
lie in the same range of time-complexity, while MF, although
still acceptably fast, is clearly slower.

7.2 Second Experiment
The second experiment was started on the 13th of March
2018 and ended on the 30th of the same month. The traffic
(≈ 440,000 impressions) and the number of clicks were sig-
nificantly smaller than in the first experiment. Nevertheless,
the p-values of Tab. 1 (bottom) confirm the superiority of the
BVMM to attract clicks over OF. Although the BVMM still
obtains a larger CTR, the comparison with MF is less sig-
nificant. This might be due to the smaller number of prod-
ucts (≈ 1000 against ≈ 10,000), which makes the task of

predicting the right items easier and helps the less powerful
algorithms. Although this is harder to quantify, the descrip-
tions of the products supplied by the second company were
also richer and more semantically expressive. This should
favour a content-based recommender such as OF.

The differences in time-complexity follow a pattern sim-
ilar to the first experiment, although they are less striking.
The OF takes 1.014 ms on average to generate one recom-
mendation, the BVMM, 0.831 ms and MF, 1.113 ms. The
BVMM is still faster, as it was during the offline tests. De-
spite the limitations of the post-recommendation sales as a
metric, they also point to significant differences among the
algorithms, already visible on a relatively small site.

8 Conclusions
We discussed the implementation, testing and online evalua-
tion of two recommender systems for e-commerce based on
a context-tree model and on sequential matrix-factorization.
The tests showed the value of both the BVMM and SSAGD
for predicting the behaviour of online users. The BVMM
in particular achieves the best CTR while remaining quite
efficient. It also clearly increases the sales following a rec-
ommendation by up to four times.

This illustrates the importance of modeling the sequen-
tial nature of user-preferences. Our sequential adaptation of
matrix factorization, SSAGD, doubles the accuracy in of-
fline tests, while the explicit modeling of sequences by the
BVMM increases accuracy even more. We believe that the
importance of modeling sequences has been underestimated
in the literature and that Markov models such as BVMM de-
serve more attention. The present work also suggests that
carrying live evaluations systematically would bring more
valuable insights and benefits than usually thought.

Significant complexity issues occur in the training of the
MF model, which requires a lot of memory, and we had to
expend considerable efforts of optimization to avoid crashes.
While this problem does not concern the recommendation
complexity, as the training stage is run only periodically, it
represents a big hurdle in practical settings. Similar issues
are likely to arise with neural models, which are slow to
train and involve large structures of nodes. Neither OF nor
the BVMM manifested a similar weakness. The same diffi-
culties have been observed by others and explain the limited
adoption of these algorithms by the industry.

The BVMM thus ensures both an excellent performance
and the necessary scalability for use on commercial web-
sites. It has since then been integrated into Prediggo’s suite
of algorithms and is offered to the customers as a standard
recommendation strategy. Its performance on other web-
shops, with catalogues of ≈ 200,000 products, and the sub-
sequent A/B tests we carried, confirm the results discussed
above. On the other hand, the memory issues that plague MF
forced Prediggo to leave it out of its product for now.
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