
The Thirty-First AAAI Conference on Innovative Applications of Artificial Intelligence (IAAI-19)

Tagging Address Queries in Maps Search

Shekoofeh Mokhtari,† Ahmad Mahmoody,‡ Dragomir Yankov,‡ Ning Xie†
smokh004@fiu.edu, ahmahmoo@microsoft.com, dragoy@microsoft.com, nxie@fiu.edu

†Florida International University, Miami, Florida
‡Microsoft Corporation, Sunnyvale, California

Abstract

Map search is a major vertical in all popular search engines. It
also plays an important role in personal assistants on mobile,
home or desktop devices. A significant fraction of map search
traffic is comprised of “address queries” - queries where ei-
ther the entire query or some terms in it refer to an address or
part of an address (road segment, intersection etc.). Here we
demonstrate that correctly understanding and tagging address
queries are critical for map search engines to fulfill them. We
describe several recurrent sequence architectures for tagging
such queries. We compare their performance on two subcat-
egories of address queries - single entity (aka single point)
addresses and multi entity (aka multi point) addresses, and
finish by providing guidance on the best practices when deal-
ing with each of these subcategories.

Introduction
Map search has become an integral part of our everyday ex-
perience - users search for locations to visit or just for in-
formation. On mobile devices Maps are one of the highest
downloaded and used apps (Comscore 2017). One of the
main categories of queries which map search handles is “ad-
dress queries”. We use this term loosely to indicate a broad
set of address patterns - cases where either the entire query
or part of it contain address reference. The address reference
itself can constitute a complete point address or partial ref-
erence to such. Some common address query patterns which
users issue and expect map search to resolve are:
• {123 Main St, San Francisco, CA 94105} - complete point

address query.
• {30 Rockefeller Plaza}, {350 5th Ave, New York} - partial

queries, with city, post code or other information missing.
• {Pennsylvania Ave Washington DC}, {Fremont, Seattle}

- road or neighborhood queries, missing exact address.
• {Quai Branly et Avenue de la Bourdonnais} - intersection

queries.
• {Bakery near Castro Street, Mountain View} - business or

place with road as location reference. Etc.
Address queries are fulfilled by a special search engine

known as geocoder (Berkhin et al. 2015). Similar to web

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Depending on the query interpretation the
geocoder may infer different results: Top Possible results for
the query: {Fremont Seattle}. Bottom Possible results for the
query: {Fremont Ave North Seattle}

search engines, geocoders map the terms of the query to cer-
tain documents, in this case known as geo entities which are
subsequently formatted and returned as results with their as-
sociated latitude and longitude. Unlike web search however,
geocoders are expected to return very limited (usually only
one) results with very high precision. The cost to users for
returning a bad result can be very high. For example, they
may use the result as driving direction and end up in a wrong
place and incur time or other loss. Therefore, having accu-
rate interpretation of address queries is of critical importance
to geocoding and map search in general.

Tagging the terms in an address query correctly turns out
to be a challenging problem. On one hand, it is very de-
pendent on the user language and market, and on the other
hand, even in the same language there might be different
query interpretations that lead to different geocoded results.

9547

The interpretations will also impact how confident is the
geocoder in the identified result (Berkhin et al. 2015). This
is important because geocoding confidence is often used by
consumer system, e.g. navigation systems, when deciding
whether to accept the result or to inform the user that no
location was found matching their query which leads to de-
crease in recall and poor user experience. As illustration con-
sider the following two queries:

Query 1 : {Fremont Seattle}. There are several possible
annotations for this query - 1) Neighborhood: Fremont, City:
Seattle; 2) Street name: Fremont, City: Seattle; 3) Busi-
ness: Fremont (e.g. colloquial for Fremont Brewery), City:
Seattle. Depending on which interpretation we assume most
likely, the geocoder may infer different results with differ-
ent confidence (in the second interpretation the confidence
may be lower as there are multiple equally likely candidates
for the road “Fremont” - Fremont Way, Fremont Pl, and Fre-
mont Ave) - see Fig 1 top.

Query 2 {Fremont Ave North Seattle}. Interpretations: 1)
Street: Fremont Ave North, City: Seattle; 2) Street: Fremont
Ave, Neighborhood (colloquial): North Seattle (see Fig 1
bottom). In the second interpretation the geocoder will not
find a road with such name in such neighborhood and may
simply return the up-hierarchy result of North Seattle.

Hence, it is central to correctly tag each token of ad-
dress queries. There have been a few strands of works fo-
cusing on tagging address related queries (Wang et al. 2016;
Li et al. 2014; Churches et al. 2002; Borkar, Deshmukh,
and Sarawagi 2001), however traditional rule-based address
parsers (Churches et al. 2002) require domain knowledge
and have been shown to be limited in classification ac-
curacy. Probabilistic methods such as (Wang et al. 2016;
Li et al. 2014) which are based on HMM and CRF have been
developed to improve the rule based methods but they have
some difficulties dealing with rich and complex features. In
recent years RNN based models have shown state of the art
results on sequence tagging problems (Ma and Hovy 2016).
In this work, after formalizing the address tagging problem,
we outline several recurrent architectures suitable for mod-
eling it. We analyze their performance on two structurally
different query patterns that we find prevalent in map search
logs. We conclude with guidance on the practices for choos-
ing a suitable architecture when working with such patterns.

Tagging Address Queries
Analyzing large data sets with address queries from an
industrial map search engine, we observe certain aspects
which make correctly tagging such queries a non-trivial task.
To enumerate a few of the challenges:
• Data is unstructured (or semi-structured), with irregulari-

ties or omissions.
• Data is noisy and may have typos and abbreviations.
• The problem is market1 dependent, with large number of

1A market is defined by language and country, e.g. fr-CA are
French queries issued in Canada.

Abbr. Tag Description
HN House Number
SBT Sub address Type (Building, Tower)
BN Building Name
SD Street Direction
ST Street Type (Ave, St, etc.)
SN Street Name
CI City
CO Country
ST State name
N Neighborhood (Kirkland)
ZP Zip Code
OT Occupancy Type (Floor, Suit, Apt)
SP Separator (near, by, in , etc.)
B Business (Starbucks,Walgreen’s, etc.)
UNK Unknown (Not related to address)

Table 1: Abbreviation and description of existing tags in
both multi point and single point address queries.

tags present in each market (see Table 1 for en-US).
• Small number of head terms and large number of tail

terms.
• Data is sparse. Unlike web search queries, most address

queries appear only once in the logs.

The above points are further exacerbated by the shift that
conversational interfaces in personal assistants provide (e.g.
Cortana, Google Now, Siri, Alexa etc.) - users start issuing
increasingly longer and more colloquial queries. So not only
are the queries sparse and form a long tail, but also con-
tain multiple irrelevant terms which need to be identified and
tagged correctly.

To build a system that learns to interpret correctly address
queries we first focus on understanding how many distinct
geo-entities are present in them. In doing so we identify two
types of queries: Single point (SP) - queries that contain a
single entity (point), and and Multi point (MP) - queries that
contain references to multiple geo-entities (points). We now
go into more details for each of these categories.

For convenience, in Table 1 we summarize some of the
tags that our models are trained to identify. The table only
shows a limited number of tags. In en-US addresses judges
identified more than 20 tags.

Single Point Queries
Single point address queries have standard format which is
mostly used by national postal service of each country. The
format of the address queries greatly depends on the country.
Figure 2 shows an example of a SP address query for United
States. The query contains only one geo-entity, in this case
a fully-qualified complete address point.

Multi Point Queries
MP queries contain terms that identify multiple geo-entities.
Some of them define the expected result and others define
points of reference. For example, many MP queries follow
the pattern:

9548

Figure 2: Example of a Single Point query. The result (and
the query) identify one address point entity. One or more
terms may be missing from the query.

Figure 3: Example of a Multi Point query. The where part
after the separator can be a full formed or partial address
address, or it can itself contain multiple entities.

[what][separator][where]
in which the “[where] part” is used as a reference. Refer-

ential queries are a very common way through which users
specify addresses in some countries, e.g. India (Berkhin et
al. 2015). Figure 3 shows one such MP query where a user
is asking about a particular “Starbucks” (entity 1- business)
that is close to an intersection (reference point). The inter-
section is comprised of two geo-entities - “Market Str” (en-
tity 2) and “Sutter Str” (entity 3) in San Francisco. Intersec-
tions themselves are another common MP query pattern.

Sequence Tagging Architectures
Sequence tagging is a well-studied task in NLP includ-
ing named entity recognition (NER), chunking, and part
of speech tagging (POS). Most of the existing approaches
are probabilistic in nature such as Hidden Markov mod-
els (HMM), Maximum entropy Markov models (MEMM)
(McCallum, Freitag, and Pereira 2000), and Conditional
Random Fields (CRF) (Lafferty, McCallum, and Pereira
2001). There are several neural network based approaches
to address the sequence tagging task (Collobert et al. 2011;
Ma and Hovy 2016).

In this work we experimented with three categories of ar-
chitectures:

One-Directional This general structure consists of (i) an
embedding layer, (ii) a forward recurrent cell, and (iii) a
fully connected layer (Kawakami 2008). For choosing the

223 yale Seattle WA

C
on

te
xt

 V
ec

to
r

House
Number

Street
Name City State

Figure 4: Sequence to Sequence model architecture for se-
quence tagging task. The light red boxes are LSTM encoder
and The blue boxes are LSTM decoder.

recurrent cell, we have two choices, and each results in a
different architecture:
• Forward-RNN: The one-directional architecture that

uses the vanilla RNN as its recurrent cell.
• Forward-LSTM: The one-directional architecture that

uses the LSTM as its recurrent cell.

Bi-Directional Our general architecture for bi-directional
structure consists of (i) an embedding layers of words, (2)
a forward recurrent cell applied on the input sequence, also
(3) a backward recurrent cell applied on the input sequence,
and (4) fully connected layer applied on the concatenation of
the forward and backward recurrent cells (Kawakami 2008).
Similar to the one-directional structure, we have two choices
for the recurrent cells, and each provide a different architec-
ture:
• Bi-RNN: The bi-directional architecture that uses the

vanilla RNN (Pineda 1987) as its recurrent cell.
• Bi-LSTM: The bi-directional architecture that uses the

LSTM (Hochreiter and Schmidhuber 1997) as its recur-
rent cell.

Sequence-to-sequence We also try the sequence-to-
sequence model introduced in (Hochreiter and Schmidhuber
1997) that has shown great success in neural machine trans-
lation (NMT), speech recognition, and text summarization.
(Sutskever, Vinyals, and Le 2014).

Experiments
For training the models, we implement all the models in Mi-
crosoft cognitive toolkit (CNTK) 2.02. All the experiments
are performed on a single GPU machine. We run all the mod-
els up to 256 epochs and select the model that achieves the
best accuracy on the validation set. We use hidden size h
= 128 and Optimization is carried out using Adam, with a
fixed learning rate of 0.1. For training our neural networks,

2https://github.com/Microsoft/CNTK

9549

en-US(SP) en-US(SP & MP) Yelp SP Yelp MP
#Train 180K 770K 100K 1M
#Validation 12K 180K 2.5K 100k
#Test 42K 50K 4K 200K

Table 2: Data statistics of the real and synthetic datasets.

Model en-US(SP) en-US(SP & MP) Yelp(SP) Yelp(MP)
F-RNN 89.46 72.16 96.97 98.24

Bi-RNN 98.48 96.14 98.44 99.68

F-LSTM 90.09 73.02 97.09 98.23
Bi-LSTM 98.77 96.69 98.39 99.69
Seq2Seq 99.17 97.50 98.22 99.69

Table 3: Per query tagging test accuracy of all models on Yelp and en-US datasets. en-US is real English address queries from
United States. Yelp SP and Yelp MP are generated address queries from Yelp dataset.

we only keep the frequent |V | > 5 words, and map all other
words to an UNK token. In order to deal with segmentation
problems in queries such as Las Vegas, we transform them
into BIO encoding.

Data Collection
We conduct all the experiments on both en-US real and syn-
thetic data. The synthetic datasets have been generated from
the sheer volume of local business information available
on-line in Yelp academic dataset 3. Yelp dataset includes
information about 156k local businesses from 11 metropoli-
tan areas across 4 countries. For our experiment, we only
keep the united states addresses which are about 100K local
businesses. We created single point (SP) and multi point
(MP) address queries from local business information such
as address, neighborhood. Table 2 provides some statistics
on the two datasets.
Real Data. These queries are collected form logs and
labeled by human judges as SP and MP queries. We created
two separate dataset including en-US (SP) which purely
contains SP queries and en-US (SP & MP) which has
combination of single and multi point queries in order to
mimic the real queries in map search.

Yelp Single Point (SP). For generating synthetic single
point address queries, We extracted the address of all avail-
able businesses in United States and employed Parserator 4

for parsing unstructured address strings into address compo-
nents.
Yelp Multi Point (MP). For generating the Yelp MP queries
we follow the above outlined common MP pattern:

[what][separator][where]
Let us term the entities in the [where] part primary en-
tities and in the [what] part secondary entities. The sec-
ondary entities mostly involves business name or business
category, from address fields of Yelp and the primary entity

3https://www.yelp.com/dataset/challenge
4https://parserator.datamade.us/usaddress

in neighborhood, city and businesses and roads near the sec-
ondary entity. We employ different patterns for generating
MP queries such as business near road, business near busi-
ness, business near place, road near road, etc. Then, we used
some perturbation techniques in order to make the generated
query looks like the real data. Data and more details will be
publicly available 5.

Evaluation and Results
Since geocoders require highly accurate tags for address
queries, we evaluate the performance of models per query
and not per entity. We compare the performance of RNN
based model such as RNN, Bi-RNN,the bi-direction RNN;
LSTM, Bi-LSTM, and sequence to sequence model. Our
experiments lead to novel insights and practical advice for
building and extending tagging address queries. Sequence
to sequence models perform really well on real data (en-
US) according to the results in Table 3. For pure single point
queries (Yelp SP), Bi-RNN performs slightly better than se-
quence to sequence model.

Our sequence to sequence model with 2 layers of LSTM
in encoder and 3 layers of LSTM in decoder achieves the
best performance results. Table 4 provides an example of
address query and tagging result from models such as For-
ward LSTM and Bi-LSTM. Since forward LSTM and for-
ward runs from left to right, the decision for each tag has
no information about upcoming words. As shown in Table
4, F-LSTM Tagged seattle as street name and didn’t detect
as the end of the query but bidirectional models look ahead
until the end of the sentence through a backward recurrence.
Bi-LSTM still didn’t tagged the query correctly but better
than forward LSTM.

Conclusions
In this paper, we examined several RNN based models for
tagging address queries. Our experiments show that se-
quence to sequence model perform well on both real and

5https://github.com/smokh004/AddressQuery

9550

Model Query: ”223 yale seattle”
F-LSTM {HouseNumber, StreetName, StreetName}

Bi-LSTM {HouseNumber, Unknown, City}
Correct Tagging {HouseNumber, StreetName, City}

Table 4: An example of tagging address query with trained model on en-US dataset.

synthetic corpora. For future works, we are looking to also
run experiments with other markets and also checking other
complicated neural network architecture such as character
level and hierarchical to improve the results.

Acknowledgments
The majority of this work was done when first author was
interning at Microsoft. This work was supported by Florida
International University dissertation year fellowship.

References
Berkhin, P.; Evans, M. R.; Teodorescu, F.; Wu, W.; and
Yankov, D. 2015. A new approach to geocoding: Binggc.
In Proceedings of the 23rd SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems,
SIGSPATIAL ’15, 7:1–7:10.
Borkar, V.; Deshmukh, K.; and Sarawagi, S. 2001. Auto-
matic segmentation of text into structured records. In ACM
SIGMOD Record, volume 30, 175–186. ACM.
Churches, T.; Christen, P.; Lim, K.; and Zhu, J. X. 2002.
Preparation of name and address data for record linkage us-
ing hidden markov models. BMC Medical Informatics and
Decision Making 2(1):9.
Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.;
Kavukcuoglu, K.; and Kuksa, P. 2011. Natural language pro-
cessing (almost) from scratch. Journal of Machine Learning
Research 12(Aug):2493–2537.
Comscore. 2017. Mobile app report.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Kawakami, K. 2008. Supervised Sequence Labelling with
Recurrent Neural Networks. Ph.D. Dissertation, Ph. D. the-
sis, Technical University of Munich.
Lafferty, J.; McCallum, A.; and Pereira, F. C. 2001. Con-
ditional random fields: Probabilistic models for segmenting
and labeling sequence data.
Li, X.; Kardes, H.; Wang, X.; and Sun, A. 2014. Hmm-based
address parsing with massive synthetic training data gener-
ation. In Proceedings of the 4th International Workshop on
Location and the Web, 33–36. ACM.
Ma, X., and Hovy, E. 2016. End-to-end sequence la-
beling via bi-directional lstm-cnns-crf. arXiv preprint
arXiv:1603.01354.
McCallum, A.; Freitag, D.; and Pereira, F. C. 2000. Maxi-
mum entropy markov models for information extraction and
segmentation. In Icml, volume 17, 591–598.

Pineda, F. J. 1987. Generalization of back-propagation
to recurrent neural networks. Physical review letters
59(19):2229.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence
to sequence learning with neural networks. In Advances in
neural information processing systems, 3104–3112.
Wang, M.; Haberland, V.; Yeo, A.; Martin, A.; Howroyd,
J.; and Bishop, J. M. 2016. A probabilistic address parser
using conditional random fields and stochastic regular gram-
mar. In Data Mining Workshops (ICDMW), 2016 IEEE 16th
International Conference on, 225–232. IEEE.

9551

