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Abstract
Clinical documents are vital resources for radiologists when
they have to consult or refer while studying similar cases. In
large healthcare facilities where millions of reports are gen-
erated, searching for relevant documents is quite challenging.
With abundant interchangeable words in clinical domain, un-
derstanding the semantics of the words in the clinical docu-
ments is vital to improve the search results. This paper details
an end to end semantic search application to address the large
scale information retrieval problem of clinical reports. The
paper specifically focuses on the challenge of identifying se-
mantics in the clinical reports to facilitate search at semantic
level. The semantic search works by mapping the documents
into the concept space and the search is performed in the con-
cept space. A unique approach of framing the concept map-
ping problem as a language translation problem is proposed in
this paper. The concept mapper is modelled using the Neural
machine translation model (NMT) based on encoder-decoder
with attention architecture. The regular expression based con-
cept mapper takes approximately 3 seconds to extract UMLS
concepts from a single document, where as the trained NMT
does the same in approximately 30 milliseconds. NMT based
model further enables incorporation of negation detection
to identify whether a concept is negated or not, facilitating
search for negated queries.

Motivation
The adoption of Health Information Systems (Winter et al.
2011), Picture Archiving and Communication Systems and
Electronic Medical Records by healthcare facilities has re-
sulted in large amount of clinical documents in digital form.
The availability of large amount of clinical documents in
digital format is transforming the healthcare facilities from
volume based care providers to value based care providers.
The push is significantly more in the radiology department,
where the radiologists are increasingly using patient’s clin-
ical history and consult the past similar cases for clinical
comparisons and past outcomes to provide targeted health-
care (McEnery 2018). For example, a radiologist might be
interested in consulting the reports of past male patients
above 40 years of age, having no smoking habit and di-
agnosed with throat cancer. Likewise a clinical researcher
might be interested in knowing the number of findings of
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benign tumour in patients who have undergone computed
tomography scans.

Information retrieval (IR) is the de facto way to leverage
the knowledge available in large resources of clinical doc-
uments like radiology reports, discharge summaries, elec-
tronic medical records, etc. However, the effectiveness of
the IR system has a significant impact on the clinical and
academic productivity of the radiologists and clinical re-
searchers. Building effective IR systems for clinical text is
challenging because of large number of clinical terms with
varied use. With abundant interchangeable words in clini-
cal domain, understanding the semantics of the words in the
clinical documents is vital to improve the search results. For
example, search for ”heart attack” should be able to retrieve
the documents containing ”myocardial infarction” as they
both mean the same. The lexicon based IR systems are fu-
tile in clinical domain due to different ways of expressing
the same clinical findings. The IR system that retrieves and
prioritizes the clinical reports based on the semantics of the
reports is more likely to provide better search results, rather
than the one based on lexicons. For example, ”cyst found in
left lower lung” is an observation similar to ”calcification of
thorax” and effective IR system should be able to identify
that both the observations are similar.

Related Work
There is an extensive amount of research to identify clini-
cal entities and the relationship between these entities (Raja,
Subramani, and Natarajan 2013), (Rak et al. 2012). Authors
(Wei 2017) proposed a mechanism to map gene variants to
unique identifiers. These text mining approaches form the
basis on which other applications can be build, to make use
of the underlying knowledge. One such application devel-
oped by (Kurnit et al. 2017) is a search engine specialised
in cancer therapies. However, these works are focussed on
addressing the information retrieval problem of the clinical
subdomains. They is very sparse work around productisable
IR system in clinical domain which can cater to multiple
modalities and clinical literature.

(Batet, Sánchez, and Valls 2011) and (Mabotuwana, Lee,
and Cohen-Solal 2013) have computed the document simi-
larity of radiology reports by using knowledge-based seman-
tic similarity using ontologies.

Due to the computational limitations in processing large
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size ontologies, most of the research to calculate semantic
similarity using clinical knowledge base is restricted to sin-
gle or few ontologies. The knowledge based IR system’s
response time is proportional to the number of ontologies
used. Most of the knowledge based IR system’s make use
of only few ontologies and have very limited applications as
they do not generalize outside those ontologies.

Clinical Semantic Search
In clinical domain many phrases or words semantically
produce the same meaning but are syntactically different.
For example, the phrases heart attack, cardiovascular dis-
ease, congestive heart failure and myocardial infarction all
mean same. Over the years researchers in healthcare domain
have developed large number of ontologies like International
Classification of Diseases (ICD), Medical Subject Headings
(MeSH), RadLex, SNOMED CT etc.

Unified Medical Language System (UMLS) developed
by US National Library of Medicine, brings together many
health and biomedical vocabularies and standards to enable
interoperability (Bodenreider 2004). It is a comprehensive
thesaurus of concepts spreading over health information,
medical terms, drug names, and billing codes. The UMLS
contains around 11 million distinct concepts with over 3.6
million names from more than 200 contributing sources in
25 languages. It also includes 12 million relations (Schulze-
Kremer, Smith, and Kumar 2004) among these concepts
making it richest knowledge base in clinical domain.

The clinical semantic search explained in this paper works
by mapping the documents into the UMLS concept space.
The search is performed in the concept space for document
retrieval. Figure 1 shows the high level modules in the clin-
ical semantic search. As with any IR system, it involves the
indexing step to index the clinical documents and the search
step for document retrieval. The pseudocode for indexing
workflow is shown in algorithm 1 and the search workflow
is shown in algorithm 2.

Data: Clinical Text
Result: Index the input Clinical Text
all concepts← ∅;
sections← Section Detector(Clinical Text);
for sentence in sections do

concepts← Concept Mapper(sentence);
negated entities← Negx Detector(sentence);
for concept in concepts do

if concept[’entity’] in negated entities then
concept[’cui’]← concept[’cui’] + ” 1”;

else
concept[’cui’]← concept[’cui’] + ” 0”;

end
end
all concepts = all concepts + concepts;

end
Index all concepts into the Search Engine;

Algorithm 1: Indexing Workflow

Data: Search Query
Result: Relavent Documents
concepts← Concept Mapper(Search Query);
negated entities← Negx Detector(Search Query);
for concept in concepts do

if concept[’entity’] in negated entities then
concept[’cui’]← concept[’cui’] + ” 1”;

else
concept[’cui’]← concept[’cui’] + ” 0”;

end
end
Search concept in the Search Engine Index;

Algorithm 2: Search Workflow

Challenge
The most challenging work in developing clinical seman-
tic search engine is building the concept mapper which
maps the clinical sentences to enriched UMLS concepts.
UMLS along with the ontologies includes a number of
tools, one among them is Metamap (Aronson 2001) which
can be used to extract UMLS concepts from the clini-
cal text. MetaMap uses a knowledge-intensive approach
based on symbolic, natural-language processing (NLP) and
computational-linguistic techniques. With the full UMLS
(all ontologies) loaded, MetaMap takes approximately 3 sec-
onds to extract concepts from a single document. This makes
use of Metamap impractical for productionisation.

The challenge is to develop a concept mapper which can
be an alternative for MetaMap with acceptable accuracy and
performance. Table 1 shows examples of clinical sentences
and few of the corresponding concepts. The matched words
in the table are the words due to which the concept was as-
signed to the corresponding sentence. The goal is to develop
a concept mapper which given the clinical sentence as input
will generate the corresponding concepts.

Concept mapping using NMT
The problem of machine translation deals with conversion of
text from one language to other with no human intervention.
Machine translation task using neural models received major
attention due to recent research breakthroughs in deep neural
network architectures (Bahdanau, Cho, and Bengio 2014).
Neural based machine translation has outperformed bench-
marks which were mostly by traditional machine learning
and rule based algorithms (Vaswani et al. 2017).

The proposed technique frames the concept mapping
problem as a machine translation problem where the source
language is the clinical text in english and the target lan-
guage is the enriched UMLS concepts. The concepts are
enriched because they include the negation information de-
noting whether the concepts are negated or not. The NMT
model is trained to translate clinical sentences in english to
enriched UMLS concepts. The dotted block in figure 1 is
replaced with NMT based code mapper.

A simple NMT system consists of two components:
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Figure 1: High Level Modules

Clinical Sentences Concepts Matched Words

Tools that help doctors see inside the blood vessels may help prevent
heart attack

C0027051 heart attack
C0018787 heart
C0005847 blood vessels

Ventricular septal rupture is a rare but feared complication after
myocardial infarction

C0242875 ventricular septal rupture
C0027051 myocardial infarction

The conservative treatment of kidney cancer in middle aged and
elderly patients

C0007134 kidney cancer
C0022646 kidney
C0006826 cancer

Suramin is not an active agent in advanced renal carcinoma
C0038880 suramin
C0007134 renal carcinoma
C0007097 carcinoma

Table 1: Clinical sentences and few of their corresponding concepts along with the matched words

• An encoder component that computes the representation
of source sentence into a fixed hidden vector.

• A decoder component that generates target representation.

Recurrent Neural Networks (RNNs) (Rumelhart, Hin-
ton, and Williams 1988) and Convolution Neural Networks
(CNNs) (Lecun et al. 1989) can be used to model encoders.
A decoder is modelled using RNNs. Attention mechanism
(Luong, Pham, and Manning 2015) is the recent area of re-
search in machine translation achieving state of the art re-
sults. Attention improves the NMT by focusing on parts
of the source sentence while decoding the target sentence.
The attention weights determine which part of the source
sentence to focus on during translation. These weights are
learned using a neural network. Different NMT architectures
empirically evaluated for mapping clinical text to enriched
concepts are listed below.

1. RNN as both encoder and decoder.

2. CNN as encoder and RNN as decoder.

3. RNN and CNN as encoder and decoder modelled using
RNN.

4. RNN as both encoder and decoder along with attention
layer (general attention).

5. RNN and CNN as encoder and RNN as decoder along
with tweaks to attention layer.

Data Preparation
Training an NMT model to map clinical sentences to UMLS
concepts needs large number of annotated sentences, anno-
tations being the tagged enriched UMLS concepts. Table 2
shows two sample annotated sentences used for building the
NMT based concept mapper.

The Text Retrieval Conference (TREC) runs Clinical De-
cision Support (CDS) track every year focusing on the re-
trieval of clinical documents such as clinical reports, pub-
lished biomedical articles and medical records (Roberts et al.
2016). Every year as part of TREC-CDS track, large number
of clinical documents are released. These documents are ab-
stracts, largely from Medline/PubMed (730k to 1.25 million
text articles), clinical trial studies provided by U.S. National
Library of Medicine and de-identified clinical notes of ac-
tual patients. 5 million sentences are extracted from 9 GB
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Input Sentences Output Concepts
fracture dislocation of the ankle with the fibula fixed be-
hind the tibia.

0C0016068 0C0040184 0C0159877 0C0012691
0C0016658 0C1281580 0C0434691 0C1279118
0C3714578

infants placed on the waterbed during the first four post-
natal days benefited more than those placed later.

0C0021270 0C0442504 0C1704765 0C1882509
0C0814225 0C0443281 0C0439228 0C0438858
0C0205087 0C0205172 0C0205435 0C1279901
0C0205450

Table 2: Clinical sentences and few of their corresponding concepts along with the matched words

compressed text files released by TREC-CDS - 2018.
Metamap along with our negation detection model is

used to annotate 5 million sentences. The negation detec-
tion model enhances the concepts with the negation infor-
mation. The data annotator took 7 days to generate the an-
notations. All the concepts which occur less than 50 times
are ignored. This left us with 1.5 millions enriched concepts.
Table 2 shows two such generated annotated sentences. 70-
20-10 split is used for training, validation and testing.

Leveraging Clinical Embeddings
Word embeddings are the distributed vector representation
of the words (Bengio et al. 2003). Word embeddings have
proven to provide state of the art performances in many nat-
ural language processing tasks (Lample et al. 2016). Pre
trained word embeddings released by google contain 300-
dimensional vectors for 3 million words. However, these
embeddings are not well suited for clinical domain as they
lack many clinical words as well as the semantic similarity
with respect to clinical domain. TREC-CDS data is used to
do transfer learning on the skip-gram model (Mikolov et al.
2013) to fine tune the google embeddings to clinical context.

The Transfer learning helped significantly to capture clin-
ical context. Figure 2 shows few clusters of the word embed-
dings after transfer learning. The clusters are formed using
euclidean distance as similarity measure. The green borders
drawn manually in the figure 2 shows the clusters that are se-
mantically close in the clinical domain. These embeddings
are used to initialise the embedding layer of NMT at the en-
coder stage (for both RNN and CNN).

Attention Mechanism
The modifications are made to the general attention of (Lu-
ong, Pham, and Manning 2015). Figure 3 shows the atten-
tion based architecture using both CNN and RNN as the en-
coder. The idea behind having CNN encoder in addition to
RNN encoder is to model n-gram information. CNN encoder
will encode the phrase level information in the sentence and
this information is used in the attention layer along with the
RNN encoder at every time step during the decoding to get
the appropriate attention weights. Attention layer along with
input feeding approach is used at every time step of decoder.
The highlighted block in Figure 3 details the attention mech-
anism. The alignment vector at whose size equals the num-
ber of time steps of the encoder is derived by comparing
the current target hidden state ht, hidden vector from CNN

Figure 2: Clinical Word Embeddings (word2vec)

hconv and the hidden vectors of all the encoder time steps
represented by ĥs.

at(s) =
exp(score(ht, hconv, ĥs))∑
si exp(score(ht, hconv, ĥsi))

where (1)

score(ht, hconv, ĥs) = (ht, hconv)
TWaĥs (2)

At each time step t of decoder the model computes the
alignment vector based on the current target state, all the
source states of RNN encoder and CNN encoder state. The
context vector ct is the weighted average of the alignments
weights which are computed using equation 1 with the en-
coder hidden vectors ĥs. This context vector along with the
current hidden target state of decoder is given to the genera-
tor to generate the output.

Evaluation
Table 3 lists the different architectures evaluated. Column
Ppl in the table represents the perplexity and BLEU repre-
sents the Bilingual Evaluation Understudy score (Papineni
et al. 2002)on the test data.

The RNN encoders are modelled using an LSTM encoder
of sequence length 50 with 4 stacked layers. For CNN en-
coder, 500 filters with various filter dimensions (4X300,
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Figure 3: NMT with Attention

3X300, 2X300) are used. The hidden vector sizes of both
RNN and CNN encoders are of size 500. The RNN decoder
is modelled using LSTM with 4 stacked layers. Dropout
layer with probability 0.3 and adam with learning rate of
0.001 is used. The β1 and β2 parameters of adam are set to
0.9 and 0.999 respectively. The models are implemented in
PyTorch (Paszke et al. 2017) and trained on a single Nvidia
TITAN X GPU. The best performing model in table 3 was
trained with batch size of 64 for 7 days to converge.

The overall performance of semantic search is measured
using the Mean Average Precision (MAP) metric @10. 5000
clinical reports across five modalities namely Diagnostic X-
Ray, mammography, magnetic resonance (MR) imaging, ul-
trasound and computer tomography are collected. 50 rele-
vant queries across all modalities are created with the help
of three radiologists. With the help of clinical experts, 10
ranked relevant reports for each query are selected from the
5000 reports. The 5000 reports are indexed into the semantic
search and the MAP is calculated for the top 50 queries with
the top 10 search results. With NMT model base concept
mapper, clinical semantic search achieved MAP@10 score
of 0.76.

Figures 4 shows the home screen of semantic search in-
dexed with the MR radiology reports. Figures 5 shows the
rendering page of the de-identifed clinical report. As shown
in the figure, the clinical Named Entity Recognition (NER)
models and clinical document classifiers are used to enhance
the user experience. For example, an anatomy tagger is used
to highlight all the anatomies in the rendered report.

Conclusion and Future Work
This paper presented an approach to build clinical IR system
based on the semantics. This paper emphasis the importance

of the method to map clinical sentences to concepts and how
it effects the functional and non functional aspects of the
underlying system. We presented an approach to model this
concept mapping challenge as a machine translation prob-
lem. We evaluated various NMT model architectures for
concept mapping and observed that the CNN+RNN as en-
coder and RNN as decoder with modified attention layer
gave us the best results. However, the CNN+RNN as en-
coder model took more time in training when compared to
RNN only encoder models.

Improvements in the NMT model require reindexing of
the data. An efficient incremental indexing pipeline can
solve this problem to certain extent. Also from our expe-
rience, we observed that the users are more interested in
user based customisations to the search results. To address
this problems we are working on building a learning system
based on the users feedback.

We observed that the NMT model fails to capture negated
concepts when the negation cue and the focus word are far
apart. The analysis showed that the percentage of negated
concepts is very low in the training dataset. As future work
we plan to address this problem by data augmentation and
model enhancements. As of now we have used 1.5 million
concepts as target vocabulary, we plan to extend the vocab-
ulary to cover more concepts.

Figure 4: Home screen

Figure 5: Report Rendering Page
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No Model Architecture Ppl BLEU
1 RNN Encoder & RNN Decoder 5.33 15.1
2 RNN Encoder & RNN Decoder + dropout 5.01 18.1
3 RNN Encoder & RNN Decoder + dropout + input feeding 5.01 18.5
4 RNN Encoder & RNN Decoder + dropout + input feeding + clinical embeddings 4.97 20.5
5 CNN Encoder & RNN Decoder 5.96 14.0
6 CNN Encoder & RNN Decoder + dropout 5.05 17.5
7 CNN Encoder & RNN Decoder + dropout + input feeding 5.04 17.5
8 CNN Encoder & RNN Decoder + dropout + input feeding + clinical embeddings 4.98 19.0
9 RNN Encoder & RNN Decoder + dropout + input feeding + clinical embeddings + attention 3.15 38.5
10 CNN Encoder + RNN Encoder & RNN Decoder 5.12 16.4
11 CNN Encoder + RNN Encoder & RNN Decoder + dropout 5.00 18.8
12 CNN Encoder + RNN Encoder & RNN Decoder + dropout + input feeding 4.92 20.0
13 CNN Encoder + RNN Encoder & RNN Decoder + dropout + input feeding + clinical embeddings 4.67 22.3
14 CNN Encoder + RNN Encoder & RNN Decoder + dropout + input feeding + clinical embeddings + attention 3.03 40.1

Table 3: Evaluation of different model architectures
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