
The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-19)

Determining Solvability in the Birds of a Feather Card Game

Shuto Araki, Juan Pablo Arenas Uribe, Zach Wilkerson, Steven Bogaerts, Chad Byers
DePauw University

Greencastle, IN 46135, U.S.A.
{shutoaraki 2020, jarenasuribe 2021, zwilkerson 2020, stevenbogaerts, cbyers}@depauw.edu

Abstract

Birds of a Feather is a single-player card game in which cards
are arranged in a grid. The player attempts to combine stacks
of cards under certain rules, with the goal being to combine
all cards into a single stack. This paper highlights several
approaches for efficiently classifying whether a randomly-
chosen state has a single-stack solution. These approaches
use graph theory and machine learning concepts to prune a
state’s search space, resulting in significant reductions in run-
time relative to a baseline search.

Introduction
In this paper we compare several search and machine-
learning approaches to determining the solvability of a puz-
zle game, Birds of a Feather (BoaF) (Neller 2018). In this
single-player game, cards are drawn randomly from a stan-
dard 52-card deck and placed face up in an r-by-c grid. Here,
we focus on the r = c = 4 case. Each of the placed cards
can be thought of as a stack of size 1. Under certain con-
ditions, stack x can be moved on top of stack y, forming a
single new stack at y’s position with x on top, and leaving
a blank space at x’s former position. This is allowed only
when x and y are in the same row or column and the stacks’
top cards meet one of two conditions: 1) they share a suit,
or 2) they have the same or adjacent rank, according to the
ordering A, 2, 3, ..., J, Q, K, where A and K are not adjacent.
The goal of the game is to combine stacks one move at a time
using these rules until a single stack remains on the grid. If a
given game state can be reduced to a single stack, then that
game state is said to be solvable. Many (but not all) initial
deals are solvable, but moves must be chosen carefully to
avoid a mistake leading to an unsolvable mid-game state.

This research compares several algorithms for taking a
game state (starting or mid-game) and determining whether
or not that state is solvable. Some algorithms achieve 100%
accuracy through search of a pruned game tree. Others avoid
the game tree entirely, aiming for lower execution time, but
also having imperfect accuracy. This paper describes each
of these algorithms in detail, and concludes with an experi-
mental comparison.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A Baseline Approach: Constrained DFS
A solvable state has a game tree with at least one leaf repre-
senting a single-stack state. Thus one approach for determin-
ing solvability is to search for such a leaf. For early-game
states, an exhaustive search is not feasible due to the size
of the tree, but a simple pruning strategy serves as an ef-
fective baseline approach (Neller 2018). Specifically, once
a solvable child is found, the parent may be declared solv-
able, with the other children pruned. Applying this pruning
to depth-first search, we call this “Constrained DFS”.

Dataset Generation
This work uses a randomly-generated dataset of 500,000
rows, each consisting of a game state, represented as a string,
and a binary value indicating whether the state is solvable or
not. The first random choice is the number of stacks, from
1 to 16, followed by the top card for each stack, and finally
the row/column placement of each stack. Constrained DFS
is then used to determine the solvability of the state. Addi-
tional input features are also generated, to be used by some
of the algorithms. Below, two types of input features are de-
scribed: graph features and card features.

Graph Features
To consider graph features, we first define two stacks to be
compatible if the top cards are of the same suit, and/or have
the same or adjacent ranks. Note in particular that compat-
ibility does not consider the position (row and column) of
the stack. We then define an undirected graph corresponding
to a state, called a compatibility graph. This graph has one
node for each stack, and an edge between nodes indicates
that the corresponding pair of stacks is compatible. Such a
graph is introduced in (Neller 2018).

Consider a state s with corresponding compatibility graph
g. Suppose s has compatible stacks xs and ys. Therefore, g
has an edge between the corresponding nodes xg and yg . If
xs and ys happen also to be in the same row or column, then
one can be placed on the other. For example, xs might be
placed on top of ys. In that case, g is updated such that yg
and all edges connected to yg are removed. If, on the other
hand, xs and ys are not in the same row or column, the edge
between xg and yg indicates the potential of the correspond-
ing stacks being combined, if future gameplay results in a
row or column match.

9627



Figure 1: An illustration of compatibility graph definitions

If a compatibility graph g is disconnected, then the corre-
sponding state is unsolvable. To see why, suppose g has two
subgraphs g1 and g2 that are disconnected from each other.
That is, there is no path between any node in g1 and any node
in g2. Gameplay only removes nodes and edges in the com-
patibility graph; it never adds them. Therefore, no gameplay
will create a path between any node in g1 and any node in
g2. Thus, the nodes in these subgraphs are permanently in-
compatible, and so the state is not solvable.

On the other hand, a connected compatibility graph is not
necessarily solvable, due to row and column requirements
for valid moves. For example, consider a two-stack state
with a 9♠ in the upper-right corner, and a 9♣ in the lower-
left. The compatibility graph consists of two nodes with an
edge between; it is connected. Due to the row/column re-
quirement, however, the state is not solvable.

Figure 1 illustrates several terms for compatibility graphs.
In graph theory, an articulation node is a node in a connected
graph that, if removed, results in a disconnected graph. Thus,
a BoaF state can become unsolvable by covering a stack
corresponding to an articulation node in the compatibility
graph. We define a critical node as a node in a compatibility
graph that is either an articulation node or a node with ex-
actly one connected edge. We also define a critical edge as
an edge that connects two critical nodes.

Suppose g1 and g2 are subgraphs of g with no nodes in
common, and that there is a single edge e connecting these
two subgraphs. Let n1 be the node in g1 connected to e;
similarly for n2. Therefore, n1 and n2 are critical nodes and
e is a critical edge in g. We define g1 and g2 as islands. That
is, an island is a subgraph that is connected to the rest of
the graph via only critical edges. If an island is connected to
the rest of the graph via only one critical edge, it is called
an exterior island; otherwise it is an interior island. Again,
Figure 1 illustrates these terms.

Finally, we introduce the idea of node connectivity, de-
fined as the minimum number of nodes that would have to
be removed to disconnect the compatibility graph.

Given these ideas, the following compatibility graph input
features are computed: minimum, maximum, median, and
mean degree; critical node, critical edge, and island counts;
is connected or not; and node connectivity.

Card Features
Several useful features of a given state can be generated via
simple counts and descriptive statistics:

• RC count: For each stack, the number of other stacks in
the same row or column (ignoring compatibility). Across
the state, this can be expressed as a mean RC count, as
well as a median, minimum, and maximum, for example.

• RC compatibility: For each stack, the number of legal
moves available, considering both compatibility and posi-
tion. This can be expressed as minimum, maximum, me-
dian, and mean values across a state.

• Ace count, Kings count: The number of aces and kings in
the state. These are considered separately from the other
cards, as they have fewer cards with which they are com-
patible by rank.

• Rank standard deviation: The standard deviation of ranks
in the state, which corresponds somewhat with the likeli-
hood that any two stacks are compatible by rank.

• Suit ratios: The ratio of the number of cards in a given suit
to the number of remaining cards in the state, expressed
as single values for each suit.

Algorithms
In this section, four novel solvability classifiers are de-
scribed: Compatible DFS, Solvability Model, Ordered DFS,
and Island Merge. Solvability Model is an approximation al-
gorithm based on machine learning, while the others achieve
100% accuracy by searching pruned trees. We describe each
approach here, with comparisons between algorithms in sub-
sequent sections.

Compatible DFS
Compatible DFS is simply Constrained DFS (described
above), with an additional optimization. Using the compati-
bility graph, Compatible DFS checks if the graph is discon-
nected. If so, then that subtree can be pruned, with the state
determined unsolvable. This optimization maintains 100%
accuracy, while also reducing the size of the game tree sig-
nificantly. Below, the performance of this approach is com-
pared experimentally with several others.

Solvability Model
The Solvability Model approach uses supervised learning to
create a classifier, with the binary solvability value being the
target output. We consider several classification algorithms.

Mean accuracy results are shown in Table 1. All mod-
els were tested via 10-fold cross-validation, as suggested
in (Kohavi 1995), on a set of 500,000 randomly-generated
states. For this initial experiment, the default hyperparame-
ters of scikit-learn (Pedregosa et al. 2011) and LightGBM
(Ke et al. 2017) were used for each model. Note that Ta-
ble 1 also shows results of two baseline models, one always
returning “solvable,” the other always “unsolvable.” Every
other model’s accuracy surpasses these baselines. The most
accurate model is LightGBM, achieving 94.44% accuracy.

LightGBM is an open-source machine learning algorithm
implementation, with both classification and regression ver-
sions available. While a full discussion is beyond the scope
of this paper, we provide a few key points. LightGBM uses
gradient tree boosting, in which an ensemble of regression

9628



Model Accuracy
LightGBM (Ke et al. 2017) 0.94443
Bagging 0.94393
Multilayer Perceptron 0.94026
AdaBoost 0.93616
Random Forest 0.93579
Gradient Boosting Classifier 0.93300
Stochastic Gradient Descent 0.92962
Logistic Regression 0.92741
Decision Tree 0.91853
Always Unsolvable 0.51225
Always Solvable 0.48775

Table 1: Accuracy in the testing set for various models.

trees are built, with each tree hopefully correcting some er-
ror of the previous trees. One insight of LightGBM is in the
order of tree construction. A best-first, rather than breadth-
first, approach is used, in which the leaf with the highest
prediction error is chosen for expansion first (Shi 2007). In
addition, LightGBM uses histograms to discretize each con-
tinuous feature (Ranka and Singh 1998). The discrete bins
of a histogram dictate the subsets into which the data is split
on that feature in tree construction, and what branch is fol-
lowed in application of the model. The use of histograms for
discretization also allows smaller data types to be used, thus
reducing memory usage (Li, Wu, and Burges 2008).

As LightGBM achieves the highest score of all of the
tested models, it is chosen for hyperparameter tuning via a
grid search. A grid search is an algorithm tuning process in
which many models are created and tested. Each model is
defined with a different combination of multiple hyperpa-
rameter values in an effort to find the ideal hyperparameters.
Using 10-fold cross-validation to tune learning rate, num-
ber of estimators, and number of leaves simultaneously, the
ideal combination is 0.2, 50, and 90, respectively. This tuned
LightGBM model increases the mean accuracy to 94.479%,
and thus is used as the canonical Solvability Model in algo-
rithm comparison experiments below.

Unfortunately, at 94.479% accuracy, the tuned LightGBM
model is still not accurate enough to be used reliably in
solvability prediction. Furthermore, due to the complexity of
some of the input features, this model is also fairly slow; in
fact, for a state with less than six cards, it is typically faster
to use a search algorithm. We revisit the use of a machine
learning model in our discussion of Ordered DFS.

Ordered DFS
Returning now to search algorithms with 100% accuracy,
note that both Constrained DFS and Compatible DFS search
siblings in arbitrary order. If a solvable child is found, the
remaining unvisited siblings are pruned. So more pruning
occurs if a solvable child is found sooner. Thus, Ordered
DFS places siblings in a priority queue, with higher priority
assigned to children with a greater estimated likelihood of
solvability. This is estimated using a regression model simi-
lar to the Solvability Model classifiers described above.

The challenge in Ordered DFS is to balance the time of
execution of the regression model with the benefit of more
precise estimates for sibling ordering. Two ideas can be con-
sidered to strike this balance. First, if the full set of features
described above is too expensive, then perhaps some subset
of features can provide a more effective balance. Second,
ordering may be applied selectively. Such ideas may bring
increased processing speed per node, but may also lead to in-
creased ordering error, meaning less pruning. Thus a careful
balance of tradeoffs is considered in the experiments below.

Input Feature Cost-Performance Analysis This first ex-
periment considers the tradeoff that a greater number and
complexity of input features leads to an improved order, but
also longer ordering time. We refer to a particular experi-
mental configuration as an Ordered DFS system. In this ex-
periment, each system varies in the subset of features used,
and is based on either LightGBM or linear regression. Light-
GBM is considered because it is the most accurate in the
Solvability Model work above. Linear regression is consid-
ered for its great simplicity and speed, as a counterbalance
to the comparative complexity of LightGBM.

Rather than explore every possible feature subset, subsets
are chosen based on 1) relationships between feature calcu-
lation requirements, and 2) time of calculation. For example,
once the expense of looping through a state is undertaken to,
say, count the number of aces, the program might as well
count the number of kings, as well as the suits (for suit ra-
tios) and open spaces (for RC count values), among other
card features. Similarly each graph feature requires the com-
patibility graph. If any one graph feature is included, then
the remaining ones can be included at little additional cost.
Exceptions to this grouping approach occur in some more
expensive calculations, like island count. Finally, note that
the number of stacks is not considered in any feature subset
for Ordered DFS, since Ordered DFS always compares sib-
lings, and siblings always have the same number of stacks.

Twelve subsets of features are tested here, as listed in Ta-
ble 2. This leads to 24 Ordered DFS systems using either
linear regression or LightGBM. In either case, the default
scikit-learn hyperparameters are used. The model is trained
on a 500,000-element random dataset, using only the des-
ignated subset of features. The resulting model is used in
Ordered DFS. Each such Ordered DFS system is tested on a
separate randomly-generated 100,000-element test set.

The last two rows of Table 2 show that input feature sub-
sets F and H lead to the fastest average search times for
LightGBM and linear regression, respectively. Subset F uses
all graph features except the most expensive, island count.
Its effectiveness demonstrates the value of the compatibility
graph, despite its cost. Subset H also performs well in linear
regression, perhaps suggesting that the three features in sub-
set H are most important of all, and that the others in subset
F require a more sophisticated model to maximize utility.

Algorithm Behavior in Ordered DFS Given the results
of the previous experiment, we explore further LightGBM
with feature subset F and linear regression with feature sub-
set H. Additional data are provided in Table 3. Before con-
sidering these results, several facts must be established.

9629



Table 2: 12 subsets of features and average total search time for each subset

Lin. Reg., H LightGBM, F
Pred. Time (×10−5 s) 0.016 0.578
RMSE 0.400 0.256
Node Count 1381 1045
Total Time (s) 0.254 0.333

Table 3: Additional performance data for linear regression
(subset H) and LightGBM (subset F).

The prediction time and RMSE rows of Table 3 cor-
respond to results about the estimation models them-
selves, separate from Ordered DFS. Each model was tested
via 10-fold cross validation on the same 500,000-element
randomly-generated dataset. Prediction time refers to the av-
erage time to estimate solvability per state. RMSE refers to
the average root-mean-squared error in estimating solvabil-
ity, where the estimated value is compared to a target value
of 1 for solvable states and 0 for unsolvable states. Thus,
for RMSE a lower number is better. Note that a prediction
of “unsolvable” for every state results in an RMSE of 0.698
for this dataset. Also note that this RMSE measure for re-
gressors is distinct from the accuracy measure for classifiers
used in the Solvability Model discussion above.

The node count and total time rows of Table 3 corre-
spond to results about the application of each of the esti-
mation models to Ordered DFS. After training each estima-
tion model on the same 500,000-element random dataset,
the resulting Ordered DFS system conducts a search on each
element in a separate randomly-generated 100,000-element
test set. The node count corresponds to the average number
of nodes that are “processed” – that is, the number of nodes
checked for being terminal or having a disconnected com-
patibility graph, followed by node expansion if warranted.
A lower node count means more effective pruning has oc-
cured. The total time column is the average total amount of
time that an Ordered DFS search requires.

It is also important to note that prediction time × node
count 6= total time, for two reasons. First, there is additional

overhead beyond just prediction time that is not captured in
Table 3. More importantly, though, note that predictions are
made for far more nodes than are actually counted in the
“node count” measure. Predictions must be made for every
generated child to create an ordering. If the ordering is ef-
fective and a solvable child is found quickly, then most of
those children will be pruned (thus not “counted”), while a
prediction was nevertheless determined for each.

Having established the meanings of these measures, con-
sider the results in Table 3. LightGBM has a lower average
RMSE than linear regression, at 0.256. This is not surpris-
ing, given the increased sophistication of LightGBM over
linear regression. Lower error means more effective order-
ing, and thus more pruning. This is reflected in the fact that
LightGBM also has a lower average node count than linear
regression, at 1045. However, it also is not surprising that
this low error requires a higher prediction time per node, at
0.578× 10−5 s.

Linear regression has a worse RMSE and therefore a
higher node count than LightGBM. Its prediction time, on
the other hand, is much faster. This faster prediction time
results in a faster total time, despite the higher node count.
Since linear regression on feature subset H is slightly faster
than LightGBM on subset F, we consider further the linear
regression model in Ordered DFS in the next experiment.

Ordering Cutoff Tuning Despite the results above, even a
linear regression model on subset H applied to Ordered DFS
is slower than Compatible DFS, with average total times
of 0.252s and 0.140s, respectively. In an effort to improve
Ordered DFS’s results, this next experiment considers the
selective application of ordering. Note that ordering of sib-
lings is less useful in late-game states than early-game states.
Late-game states have trees with fewer levels, and so the
benefits of pruning siblings decreases, while the solvability
estimation cost per child remains the same. A new order-
ing cutoff hyperparameter allows more selective application
of sibling ordering, by specifying the number of stacks in
a state for which such ordering will no longer be done. For
example, with an ordering cutoff value of 5, Ordered DFS

9630



Figure 2: Effect of ordering cutoff on Ordered DFS average
total time

performs sibling ordering only for states with greater than
five stacks. Otherwise, an arbitrary ordering is used, and no
solvability estimation cost is incurred – just as in Compati-
ble DFS.

The lowest sensible ordering cutoff value is 2, meaning
that all children will be ordered except for children of two-
stack states. It never makes sense to order the children of
a two-stack state, as would be done with ordering cutoff
1. This is because all two-stack states have either zero or
two children. Zero children means the two-stack state is an
unsolvable state, and of course there are no children to or-
der. Two children means the two-stack state is solvable by
putting either stack on the other, with the only difference be-
ing which stack ends up on top. Thus, ordering of these two
states is irrelevant.

In this experiment, then, 15 Ordered DFS systems are
considered, with ordering cutoffs from 2 to 16. Other char-
acteristics of the systems use the conclusions from previous
experiments. Each uses linear regression, since that was the
best model in the previous experiment. Each also uses fea-
ture subset H – the best subset found for linear regression in
the first Ordered DFS experiment.

Results are in Figure 2. The curve shows the average
search time for Ordered DFS with linear regression for each
ordering cutoff. For comparison, the straight line shows the
performance of Compatible DFS, which does not consider
ordering cutoff at all. Note, as expected, that Ordered DFS
with ordering cutoff 16 is equivalent to Compatible DFS,
plus a bit of overhead. With ordering cutoffs below 9, the
tree is small enough that the effort spent ordering does not
lead to significant enough pruning to be worthwhile. The
ideal ordering cutoff is 11.

Based on this series of experiments, the ideal Ordered
DFS system uses linear regression with feature subset H and
ordering cutoff 11. This system is used in the comparison
experiments described below.

Island Merge
Another algorithm that uses graph features for pruning is Is-
land Merge. Recall the definitions of exterior and interior
island, critical node, and critical edge, as illustrated in Fig-
ure 1. Islands are important because with the exception of
critical nodes, to maintain solvability requires that stacks in
an island be moved to cover only other stacks in the same
island. Critical nodes and edges must be handled correctly
to avoid a disconnected compatibility graph and therefore
unsolvable state.

Island Merge is a search based on Compatible DFS, but
with further pruning based on compatibility graph analy-
sis. As gameplay progresses, more stacks are covered, and
thus more nodes are removed from the compatibility graph.
This means fewer edges in the compatibility graph and a
greater chance of critical nodes and edges. Island Merge
tracks these graph features. While we do not provide here a
formal proof of correctness, the algorithm described below
achieves 100% accuracy on a test set of 500,000 randomly-
generated states.

The key idea of Island Merge is that each island can be
treated as a “mini-game” of BoaF. To collapse an island is
to make a series of moves reducing that island to a single
stack, essentially solving that mini-game. In the same way
that a full BoaF game state may be unsolvable even with
a connected compatibility graph, an island may also be un-
collapsible even with a connected compatibility (sub)graph.
Thus, an attempted collapse operation may fail.

Exterior islands should be collapsed before interior is-
lands. This is because an interior island typically has at least
two critical nodes; the process of collapsing will inherently
cover one of them, thereby severing the connection to the
corresponding island. Thus, Island Merge prunes the tree
such that only exterior island-collapsing moves are consid-
ered. In rare circumstances, an interior island could be col-
lapsed first if it has just one critical node with multiple criti-
cal edges, but exterior islands may always be collapsed first.

In addition to collapsing, Island Merge uses a second op-
eration, merging. Suppose s is a single-stack exterior island
adjacent to another island a. To merge s into a is to consider
s as part of a when collapsing a. If a is an interior island con-
nected to a set of islands E, then a becomes an exterior is-
land when all but one island in E is merged with a. In short,
under the stated conditions, merging converts an island from
interior to exterior, making it eligible for collapsing.

At a high level, then, Island Merge chooses between these
two operations: to collapse an exterior island, or to merge
a single-stack exterior island with another island. If a col-
lapse operation is chosen, then moves not corresponding to
collapsing that island can be pruned, until the collapse is
complete or it fails. If a merge operation is chosen, then the
single-stack exterior island is considered part of another is-
land, and then a new high-level operation is chosen.

This exploration of high-level operations can be mod-
eled as a search in an island tree, as illustrated in Figure 3.
Initially, the game tree is explored via ordinary Compati-
ble DFS, as shown with the “DFS” marker at the top of
the tree. This continues with each new state generated by
a player move, until the current game state comes to have

9631



Figure 3: Game tree for island merge

multiple islands. At this time, Island Merge chooses from
available high-level operations. For example, in Figure 3,
we show three islands near the root of the tree, indicated
by A − B − C . Note that B is an interior island, while A
and C are exterior islands, and so the algorithm can choose
to collapse either A or C. Suppose the algorithm chooses to
attempt to collapse A. In that case, a successful collapse (if
it exists) is found and the algorithm moves on to the next
high-level decision. At that point, it either merges A into
B or collapses C. If required due to exclusively unsolvable
states further down the tree, the algorithm backtracks to find
an alternative successful collapse of A (if it exists). If no
successful collapses of A exist, or none lead to ultimately
solving the game, then backtracking occurs one level higher
in the island tree, such that the algorithm attempts to collapse
C instead of A. This process continues until either a solved
state is found and the search returns “solvable”, or all moves
result in unsolvable states, and the search returns “unsolv-
able”. Below, the performance of Island Merge is compared
with the other algorithms of this paper.

Algorithm Comparison
Each algorithm is evaluated based on runtime and nodes
searched, using a dataset of 248,170 randomly-generated
states. All tests are conducted using a local parallel com-
puting network of 20 computers running Ubuntu 16.04 with
a 4-core Intel i5-2400 CPU and 8GB of RAM each.

Figures 4 and 5 illustrate the mean performance of
each algorithm in terms of runtime and number of nodes
searched, respectively. These data suggest that the number
of nodes explored is the greatest influence on runtime. They
also demonstrate improvements by all experimental algo-
rithms, both in runtime and nodes searched, relative to Con-
strained DFS. This advantage tapers off as the number of
stacks in the state decreases, to the point where differences
in performance between algorithms are comparatively small.
Thus, the data can be separated into two major regions: the
divergent region concerning states with at least ten stacks,
and the convergent region concerning states with less than

Figure 4: Comparison of the average runtime for each algo-
rithm.

ten stacks.
Consider Figure 4. Solvability Model (with LightGBM)

has the fastest running time in the divergent region, at
1.9822×10−6 seconds. Note, however, that Solvability
Model has imperfect accuracy, at 94.479%. Among the
100% accuracy algorithms, Ordered DFS consistently has
the fastest runtime in the divergent region. Compatible DFS
has the second-fastest runtime, followed by Island Merge. In
the convergent region, however, the time needed to search
the game tree is less than that required to apply Solvabil-
ity Model’s prediction strategy. Thus, the Solvability Model
is the slowest algorithm in that region, but only by a very
small margin. Furthermore, since Constrained DFS has the
fastest per-node runtime, it has the fastest overall runtime in
the convergent region; again, though, the difference is very
small.

Figure 5 highlights the fact that Island Merge searches the
fewest nodes in the divergent region. Ordered DFS comes in
a close second, followed by Compatible DFS. The Solvabil-
ity Model cannot be considered in this comparison, since it
does not explore the game tree. Even though Island Merge
has the highest per-node runtime, its reduced number of
nodes explored suggests that it may have the fastest poten-
tial runtime of all experimental algorithms. Additionally, all
three experimental algorithms search nine to ten times fewer
nodes than Constrained DFS on average.

In Figure 5, it is interesting to note the small rise in nodes
examined for Constrained DFS for lower numbers of stacks.
This is because the fewer stacks a randomly-generated state
has, the less likely that it is solvable. Since Constrained DFS
prunes only when a solvable node is found, unsolvable states
will result in no pruning, and thus a higher count of nodes
examined. This does not occur in the other algorithms, how-
ever, because their pruning is based on not only solvability,
but also the compatibility graph.

9632



Figure 5: Comparison of the average number of nodes ex-
plored for each algorithm.

Considering both figures, there is a comparatively large
difference between the three experimental algorithms and
Constrained DFS – but is this difference significant? Since
the data used to generate Figures 4 and 5 is not normal, we
cannot use standard deviation to determine statistical signif-
icance. However we use a T-test to show that each algorithm
is significantly different from the others, since the sample
size is statistically large. Specifically, the largest p-value
among all pairwise combinations of algorithms in the fig-
ures is less than 0.0001, suggesting statistical significance.

Interestingly, while Compatible DFS is not the fastest al-
gorithm, its overall performance is comparable to Ordered
DFS and Island Merge. The reasonably strong performance
of Compatible DFS, which checks only for compatibility
graph connectivity, suggests that this feature is critical in de-
veloping an efficient search-based classifier.

Related Work
Games frequently serve as the context for developing op-
timization algorithms, since many are NP-complete despite
having a simple rule set. That is, their large search space
makes an exhaustive search of potential moves intractable.
This prompts the development of heuristics and pruning
strategies to maximize efficiency with minimal losses to ac-
curacy. BoaF is an example of a game with perfect informa-
tion, since no relevant game information is hidden from the
player. Since BoaF is newly-developed, no research exists
particularly for this game, but much related work exists for
other perfect information games.

Solver algorithms are designed to maximize play accu-
racy for a multi-dimensional problem, since a successful
game is often determined by more than one characteristic.
This idea of a nonlinear solution-finding process highlights
the need for planning on the part of the solver (Hoffman
and Nebel 2001). Multidimensional planning is most evi-

dent in multi-player games such as checkers (Samuel 1959),
chess (Campbell, Hoane Jr., and Hsu 2002), and Go (Sil-
ver et al. 2016), since the strategy of the solver is depen-
dent upon an unknown sequence of opposing moves. How-
ever, planning is still necessary in relaxed, single-player ver-
sions of these games, as well as games such as FreeCell
(Paul and Helmert 2016; Elyasaf, Hauptman, and Sipper
2011) and solitaire (Bjarnason, Tadepalli, and Fern 2007;
Helmstetter and Cazenave 2003), where optimal play may
be defined by various independent factors. BoaF may also be
included in this group, as many similarly independent prop-
erties of stacks exist. These properties influence branching
in the game tree and in the path to a solution.

However, BoaF differs significantly in that the number of
moves for each solution is identical. That is, while cycling
through the deck in solitaire and using free cells in Free-
Cell lead to solutions of varying length, every solution to a
solvable BoaF state with n stacks is n − 1 moves long. As
a result, there is less emphasis in BoaF on efficient moves
as there is on accurate moves, and algorithms accordingly
focus more on intelligent move selection and pruning of the
search space. This logic relates to work on deadlock patterns
by Paul and Helmert (2016), and is strikingly similar to ideas
proposed by Helmstetter and Cazenave (2003). In fact, many
parallels exist in limitations and patterns based on state po-
sitions in BoaF and Gaps (Helmstetter and Cazenave 2003).

Conclusions and Future Work

This research presents several BoaF solvability classifier al-
gorithms. The most effective algorithm tested is Ordered
DFS with linear regression, feature subset H (a few key
graph features), and ordering cutoff 11. Other tested strate-
gies are nearly as effective, and all show significant improve-
ment over the baseline Constrained DFS approach in run-
time and search space size.

These advancements also open various avenues for fur-
ther research. Potential further optimizations exist for many
algorithms, such as repeated island detection in Island
Merge. Additionally, features that would require an exhaus-
tive search to generate may be estimated via efficient ex-
ploration of the search space. For example, score is calcu-
lated as the square of the number of cards in each stack in
a terminal or unsolvable state. Thus, mean score for a state
may be estimated via an Island Merge-based approach, as is-
land size could predict maximum stack sizes for unsolvable
states. Score metrics could inform evaluation of state diffi-
culty, and/or evolutionary generation of difficult states. Test-
ing states with different row/column dimensions could en-
courage novel algorithm strategies, owing to different search
space sizes, compatibility graph connectivity, and/or posi-
tional limitations. Lastly, a greedy solver algorithm is a natu-
ral extension of the proposed search algorithms, as they find
the solution of any state declared solvable. Focusing on a
solver could employ score-based decisions, as well as el-
ements of Monte-Carlo tree search, to build on intelligent
ordering and pruning methods outlined in this paper.

9633



References
Bjarnason, R.; Tadepalli, P.; and Fern, A. 2007. Searching
solitaire in real time. ICGA 131–142.
Campbell, M.; Hoane Jr., A. J.; and Hsu, F.-h. 2002. Deep
blue. Artificial Intelligence 134(2):57–83.
Elyasaf, A.; Hauptman, A.; and Sipper, M. 2011. GA-
FreeCell: evolving solvers for the game of FreeCell. In 13th
Annual Genetic and Evolutionary Computation Conference,
GECCO ’11, 1931–1938.
Helmstetter, B., and Cazenave, T. 2003. Searching with
analysis of dependencies in a solitaire card game.
Hoffman, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.;
Ye, Q.; and Liu, T.-Y. 2017. Lightgbm: A highly effi-
cient gradient boosting decision tree. In Guyon, I.; Luxburg,
U. V.; Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan,
S.; and Garnett, R., eds., Advances in Neural Information
Processing Systems 30. Curran Associates, Inc. 3146–3154.
Kohavi, R. 1995. A study of cross-validation and bootstrap
for accuracy estimation and model selection. In Proceed-
ings of the 14th International Joint Conference on Artificial
Intelligence - Volume 2, IJCAI’95, 1137–1143. San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc.
Li, P.; Wu, Q.; and Burges, C. J. 2008. Mcrank: Learning
to rank using multiple classification and gradient boosting.
In Advances in neural information processing systems, 897–
904.
Neller, T. 2018. “birds of a feather” solitaire card game.
http://cs.gettysburg.edu/ tneller/puzzles/boaf/. Accessed:
2018-07-11.
Paul, G., and Helmert, M. 2016. Optimal solitaire game
solutions using A* search and deadlock analysis. In Pro-
ceedings of the Ninth International Symposium on Combi-
natorial Search, SoCS 2016, 135–136.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine learning in Python. Journal of Machine
Learning Research 12:2825–2830.
Ranka, S., and Singh, V. 1998. Clouds: A decision tree clas-
sifier for large datasets. In Proceedings of the 4th Knowledge
Discovery and Data Mining Conference, 2–8.
Samuel, A. L. 1959. Some studies in machine learning using
the game of checkers. IBM Journal of research and devel-
opment 3(3):210–229.
Shi, H. 2007. Best-first decision tree learning. Ph.D. Dis-
sertation, The University of Waikato.
Silver, D.; Huang, A.; Maddison, C.; Guez, A.; Sifre, L.;
van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe, D.;
Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.

2016. Mastering the game of Go with deep neural networks
and tree search. 529:484–489.

9634


