
The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-19)

Machine Learning Based Heuristic Search
Algorithms to Solve Birds of a Feather Card Game

Bryon Kucharski, Azad Deihim, Mehmet Ergezer
Wentworth Institute of Technology

550 Huntington Ave, Boston, MA 02115
{kucharskib, deihima, ergezerm}@wit.edu

Abstract
This research was conducted by an interdisciplinary team of
two undergraduate students and a faculty to explore solutions
to the Birds of a Feather (BoF) Research Challenge. BoF is a
newly-designed perfect-information solitaire-type game. The
focus of the study was to design and implement different al-
gorithms and evaluate their effectiveness. The team compared
the provided depth-first search (DFS) to heuristic algorithms
such as Monte Carlo tree search (MCTS), as well as a novel
heuristic search algorithm guided by machine learning. Since
all of the studied algorithms converge to a solution from a
solvable deal, effectiveness of each approach was measured
by how quickly a solution was reached, and how many nodes
were traversed until a solution was reached. The employed
methods have a potential to provide artificial intelligence en-
thusiasts with a better understanding of BoF and novel ways
to solve perfect-information games and puzzles in general.
The results indicate that the proposed heuristic search algo-
rithms guided by machine learning provide a significant im-
provement in terms of number of nodes traversed over the
provided DFS algorithm.

1 Introduction
This research was conducted by an interdisciplinary team of
two undergraduate students and a faculty to explore solu-
tions to the Birds of a Feather (BoF) Research Challenge
proposed by (Neller 2016). BoF is a perfect-information
solitaire game, comparable to FreeCell solitaire.

BoF is played with a standard 52 card deck. Each game
begins with a starting deal of sixteen random cards orga-
nized into a 4-by-4 grid. The player must select an individual
card and move it on top of another card in the selected card’s
row or column provided that one of the following conditions
are met: (1) Both cards have the same suit. (2) Both cards
have the same rank. (3) Both cards have adjacent ranks. For
example, a King of Hearts can be placed on top of a Queen of
Clubs since their ranks are adjacent, or that King of Hearts
can be placed on top of a Nine of Hearts since they have
the same rank. The game concludes when fifteen moves are
made resulting in one stack of all sixteen cards.

Newly-discovered perfect-information puzzles offer a
plethora of terrain for exploration and allow for fun and cre-
ative solutions. The nature of BoF allows for all possible

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

moves to be organized into a decision tree, which can be tra-
versed through with various types of algorithms. Depth-first
search (DFS) and breadth-first search (BFS) are two rudi-
mentary approaches to tree traversal that are straightforward
to implement and can solve the game if possible. However,
there is still room left for improving their performance us-
ing auxiliary algorithms. As part of the challenge proposed
by Neller, teams were asked to explore potential heuristics
to guide the performance of these graph algorithms. This
compelled our team to delve into more intelligent solutions
such as heuristic-based traversal algorithms. There are sev-
eral features that can be extracted from any state of a BoF
game to be used directly as a heuristic to guide the traver-
sal. This abundance of applicable features facilitated a ma-
chine learning approach: suitable features can be used as
an input, and the output can be applied as a heuristic -
which allows the traversal to be directed by multiple features
rather than just one. The team compared the provided depth-
first search to heuristic algorithms such as Monte Carlo tree
search (MCTS), as well as a novel heuristic search algorithm
guided by machine learning.

The applications of machine learning to solving games
have been well studied. IBM engineers have applied lin-
ear approaches as well as alpha-beta pruning to solve the
game of checkers (Samuel 1959), (Samuel 1967). (Yan et al.
2005) proposed an heuristic approach to the Klondike soli-
taire that solved twice as many games on average than an
expert human player. Machine learning based solutions to
FreeCell have also been explored. (Chan 2006) compared
the performance of multiple algorithms, including heuristic
approaches, neural networks, Bayesian learning and deci-
sion trees.

Besides machine learning algorithms, randomized search-
based techniques are employed to decrease the number of
nodes that are evaluated to solve a game. Alpha-beta prun-
ing (Knuth and Moore 1975) has been the forefront for fi-
nite, zero-sum two player games with perfect information.
(Coulom 2006) introduced a new algorithm, Monte Carlo
tree search, which combines Monte Carlo methods with tree
search to solve these types of games. MCTS has been widely
used in solving various games, including a 9 x 9 computer
Go program named Crazy Stone (Coulom 2007), Othello
(Nijssen 2007), and Tic Tac Toe (Auger 2011). Google’s
DeepMind employed a combination of Deep Learning and

9656



MCTS to create AlphaZero, an algorithm that mastered
Chess, Shogi, (Silver et al. 2017a), and 18 x 18 Go (Silver
et al. 2017b).

MCTS has also been implemented in single player games
such as Sudoku (Cazenave 2009) and SameGame (Schadd
et al. 2008). In our research, MCTS is applied to Birds of
a Feather, a finite, single player game with perfect informa-
tion.

The paper is organized as follows: Section 2 provides a
brief introduction to heuristic search algorithms employed
in this research. Section 3 defines the proposed machine
learning based heuristic search algorithms. Section 4 intro-
duces the experimental settings and the evaluation criteria.
Section 5 discusses the empirical results obtained. Finally,
Section 6 states the conclusion and suggests future work.

2 Search Algorithms
This section reviews the provided solution to the BoF chal-
lenge and introduces the heuristic search algorithms em-
ployed in the proposed solution.

Depth-first search
Depth-first search is an algorithm that allows for simple
traversal through graphs. The nature of DFS is that it visits
each node once and only once by beginning at the root and
exploring as far down the tree as possible before backtrack-
ing. DFS can be used to solve Birds of a Feather because all
possible moves can be organized into a decision tree. Any
solution to a solvable deal of Birds of a Feather must reside
in the deepest level of the tree, which makes DFS a desirable
method of traversal.

Another algorithm that can be used to solve Birds of a
Feather is breadth-first search, which prioritizes finding new
paths by searching all the node’s children prior to advancing
to the next level of the tree. This method of traversal would
be undesirable because it would search every node in the top
fifteen levels before reaching the final level of the tree where
every possible solution must reside.

Linear Regression
Linear regression (LR) is a supervised learning algorithm
employed to forecast continuous outcome. It generally re-
quires a structured array of real numbers, x and predicts vec-
tor of real numbers, y.

The predicted output, ŷ relies on a hypothesis function,
h(x).

y ≈ ŷ = h(x).

For LR, the hypothesis function, h(x) yields a line that
best fits the training data:

h(x) =

n∑
i=0

wixi + b

where n is the number of data points in our data-set. We
can then design a cost function to minimize the difference
between the current prediction and the true label:

El =

n∑
i=0

(yi − (wixi + b))
2

To minimize the error, the partial derivative of El can be
set to 0 with respect to both variables. A closed form solution
to the above equation is:

w =

∑n
i=0(xi − xm)(yi − ym)∑n

i=0(xi − xm)2

b = ym − wxm
where xm and ym are the means of the x and y vectors,

respectively (Abu-Mostafa, Magdon-Ismail, and Lin 2012).
The LR model yields a continuous value ŷ ∈ IR1. In our

case, y represents solvability of a given game state, and LR
predicts if the game is solvable or not. Thus, a higher value
for ŷ indicates a larger confidence in solving the game, and
a lower value suggests a potentially unsolvable game.

Monte Carlo Tree Search
MCTS is a tree search algorithm that computes the best
move to make in a given state. The algorithm consists of
a selection phase, expansion phase, simulation phase, and
a back-propagation phase (Coulom 2006). In the selection
phase, the algorithm starts at the root of the tree and tra-
verses down fully expanded nodes until a leaf node that is
not fully expanded is encountered. In the expansion phase, a
child of the leaf node that has not been visited is simulated
n number of times in the simulation phase. The simulation
produces an outcome, which is then propagated back to the
root node.

3 Machine learning based heuristic search
algorithms

BoF Research Challenge provided an implementation of
DFS as well as a sample script for generating solvability
data. Our team leveraged this file and created addition fea-
tures to collect data across 10,000 seeds. The data was split
into test and train sets, and models were created as part of
a heuristic search algorithm. Every iteration of the heuristic,
the features were generated for the current node. The prob-
ability of solvability is predicted using a linear regression
model for every child of the current node, then rearranged
from highest probability to lowest probability. The highest
probability child is selected first as the move to make, and
the heuristic repeats. If a solution is not found, the second
highest probability child is selected until the game is solved
or all the nodes are exhausted. A priority queue was em-
ployed to implement this behavior. The LR solvability pre-
dictions were set as the priorities for the nodes and the game
would pull the highest priority element to advance.

Evolution of search
We started the algorithm development with a higher num-
ber of features and a more complicated prediction model.
We trained various models to find a trade-off between the
number of features generated and model sophistication. We
managed to reduce the number of features and model com-
plexity with minimal compromise in algorithm performance.
Below, we discuss some of our findings during this research.

9657



Table 1 lists the train and test accuracy scores of vari-
ous machine learning models on the same feature set. These
models are covered in an introductory AI elective taught
at the team’s university (Ergezer, Kucharski, and Carpen-
ter 2018) and can be implemented with ease using SciKit
(Pedregosa et al. 2011).

Model Train / Test
Accuracy (%)

Logistic regression 75.48 / 75.41
KNN 71.17 / 70.10
Decision trees 74.81 / 74.75
Random forest 73.90 / 73.97
AdaBoost 74.30 / 74.23
Gaussian naive Bayes 71.48 / 71.54
Neural networks 75.36 / 75.17

Table 1: Train and test accuracy scores of various machine
learning models using the six BoF features

Some of these models’ performances, such as the neu-
ral networks (NN), are sensitive to their tuning parame-
ters. In order to achieve a reasonably high performance, we
conducted a separate search through their tuning parame-
ters. For the case of NN, we swept through four α values:
[0.0001, 0.01, 1, 3] and four sets of hidden layers, each with
100 neurons for each α value: [1, 3, 6, 12]. The tabulated re-
sults are the best of these 16 candidates. Future work can
involve employing evolutionary algorithms to optimize the
set of features as well the model parameters (Neller et al.
2010) and (Ergezer, Simon, and Du 2009).

Since none of the tested 16 NN architectures outper-
formed regression, we settled for a linear model to minimize
the model complexity. We decided to add more flexibility to
our model by transforming the existing features. We trans-
formed the six final features into a new feature matrix con-
sisting of third order polynomial combinations of these fea-
tures. Thus, the number of features expected by the model
increased from six to 83 with minimal added cost of time
and computational complexity.

Table 2 lists the results of adding the polynomial features
to the logistic regression model. The first column represents
the range of cards left in the game for the train and test data.
We developed a different model for each range given in this
column. The table allows us to evaluate the consequence of
extending the features as a function of number of cards left
in the game.

Cards Features Train / Test
Accuracy (%) Features Train / Test

Accuracy (%)

0 - 16 6 73.60 / 73.47 83 76.66 / 76.58
8 - 16 6 75.78 / 75.95 83 76.11 / 76.04
16 6 99.63 / 99.84 83 99.63 / 99.84

Table 2: Train and test accuracy scores of models with vari-
ous game states before and after adding polynomial features

Based on Table 2, we observe that in the most general
case, when the model consists of all possible number of

cards, transforming the number of features with the third de-
gree polynomial increases the train and test accuracy scores
by about three percent. On the other hand, in the most spe-
cific case, when the model considers only a new game, ex-
tending the number of features does not benefit the model
accuracy. None of the cases’ performance deteriorates due
to transformed features. Based on these results, we decided
to transform our features and expanded input to all models.

The Proposed Algorithm
A variety of algorithms using the heuristic and DFS were
compared in our research (Kucharski, Deihim, and Ergezer
2018). A heuristic only model, labeled as LR, uses data col-
lected across every number of card possibility (1 to 16) to
train a single model. Multiple novel algorithms which com-
bined both linear regression and DFS were also evaluated.
LR8+DFS is an algorithm that uses a trained model when
the number of cards is eight or above, and a DFS when the
number of cards is below eight. LR16+DFS does the same,
but the model is trained and used on inputs with only 16
cards. Finally, the algorithm titled LR+DFS combines four
LR multiple models with DFS. One model is trained on data
with 16 and 15 cards, one model with 14 and 13 cards, one
with 12 and 11 cards, and another with ten and nine cards.
DFS is employed when the number of cards is below nine.
When running the algorithm, the model used to predict the
probability of each child is selected based on the number of
cards present in the game.

The combination of heuristic search and DFS was im-
plemented because the benefit of the heuristic models di-
minished with a lower amount of cards. Tables 3 and 4 list
the correspondence between solvability and accuracy, where
solvability is the percentage of training data that is solvable.
Higher solvability percentage correlates to a higher accuracy
for models with high amount of cards, and a lower solvabil-
ity corresponds to lower accuracy. The use of DFS for situa-
tions with fewer cards may mitigate inaccuracies in cases
with lower number of cards and allow for the algorithm
to find a solution quicker. Furthermore, combining multi-
ple models may prevent underfitting since there is less data
about nodes with a higher number of cards. Separating their
models may reduce the need to create a more sophisticated
model with a higher computational cost. Multiple models
also allow for higher accuracy regardless of the number of
cards in a node.

The following six features were generated to be utilized
with the heuristic search algorithms:
− Number of Valid Moves - number of adjacent ranks or

same suits in the same row or column
− Number of Pairs - number of adjacent ranks or same

suits, not necessarily in the same row or column
− Suit Most - number of times the most frequent suit ap-

pears
− Rank Most - number of times the most frequent rank ap-

pears
− Ratio of number of moves per number of cards left
− Ratio of number of pairs per number of cards left

9658



Cards Solvability
(%)

Train / Test
Accuracy (%)

16 and 15 95.21 95.33 / 94.85
14 and 13 83.97 85.10 / 84.70
12 and 11 59.53 72.84 / 73.02
10 and 9 32.71 73.21 / 73.61

Table 3: Accuracy of models for LR+DFS algorithms

Cards Algorithm Solvability
(%)

Train / Test
Accuracy (%)

All Cards LR 46.29 76.66 / 76.58
8+ Cards LR8+DFS 52.32 76.11 /76.04
16 Cards LR16+DFS 99.68 99.63 / 99.84

Table 4: Accuracy of models for single model algorithms

MCTS Solution to BoF
Besides the LR, performance of a randomized tree search
was also evaluated. The MCTS algorithm has a selection,
expansion, simulation, and back-propagation phase as dis-
cussed in Section 2. For BoF, the selection phases follows a
tree policy using the upper confidence bound (UCT) intro-
duced by (Kocsis and Szepesvári 2006). The next node to
traverse is selected by maximizing

UCT (v) =
qv
nv

+ c

√
logNv

nv

where qv is the number of wins subtracted from number of
losses for current node v, Nv is the number of times the
current node v has been visited, nv is the number of times
each child node of v has been visited, and c is a constant to
control exploration versus exploitation.

During the simulation phase, a random policy is used
where random children are selected from node v until a ter-
minal state, where an outcome of 1 was assigned for a win,
or the goal node was found, and -1 was assigned for a loss,
or no more children were available to select. At the end of
each simulation, the values of q and N are back-propagated
for every child until the root of the tree is reached.

Given a new state s, this tree policy, random policy, and
back-propagation are repeated for 160,000 simulations to se-
lect the ideal move to make. Selecting the ideal action to take
is repeated until the game is in a terminal state. For BoF, the
probability of randomly selecting children until a win is low
requires a relatively large number of simulations to find the
best child node.

4 Empirical evaluations
To test the performance of the proposed algorithms, 50 seeds
were randomly selected. These seeds were used to control
the randomness of the deals generated. On occasion, there
are outlier seeds that have very few paths to a solution, mak-
ing search time extremely long - using the same seeds main-
tains uniformity across each algorithm. The same seeds were
used to test each algorithm, allowing each algorithm to solve

Figure 1: Running total of number of nodes explored by each
algorithm for the 50 random seeds. DFS is depth-first search,
LR+DFS is four LR models for greater than eight cards and
DFS for the rest, LR is solely one LR model for all game
states without a DFS, LR16+DFS is one LR model for when
the game starts and DFS for rest of the moves, LR8+DFS is
one LR model for greater than eight cards and DFS for less.

the same 50 deals. If each algorithm were to be tested on dif-
ferent seeds, the performance of each may be compromised
by the number of outlier seeds each algorithm is tested on.

In order to compare the algorithms, they must all be eval-
uated using the same metrics. As the algorithms searched
through each seed for a solution, the number of nodes visited
and the amount of time taken to find a solution were tracked.
These were the metrics used to determine the effectiveness
of each algorithm. The median, mean, and standard devia-
tion were then calculated to better understand how each al-
gorithm performed on a seed-by-seed basis. The ideal algo-
rithm should be able to find a solution with minimal traversal
and relatively fast computation time.

Simulations were executed on a server with 32 2.0 GHz
Intel Xeon CPU E5-2640 v2 processors. Data generation
was performed using Java and model creation and deploy-
ment were accomplished with Python.

5 Experimental results
Figure 1 illustrates the running total of the number of nodes
explored by each algorithm for the 50 random seeds. The
smaller number of nodes explored, the better. All four of the
tested heuristic algorithms consider less number of nodes
than the provided DFS to solve the game when possible.
Employing LR with a single model for all number of cards
and without DFS finishes 50 games with the least number
of nodes exploration. This indicates the success of the pro-
posed heuristics: sorting by solvability prediction. Special
attention should be paid to LR16+DFS where we deploy one
LR model for the first move when the game starts and DFS
for all of the other moves. LR sorts the nodes at the begin-
ning of the game from most to least likely to be solvable.
Based on Figure 1, running this heuristic once is sufficient
to boost the performance of DFS.

9659



Table 5 presents the median, mean and standard devia-
tion of the number of nodes explored by each algorithm,
respectively. The median, mean and standard deviation of
number of nodes explored by all of the proposed algorithms
were less than DFS. The largest decrease in the median node
count was observed between LR only and DFS as 88.60%.
The largest decrease in the mean node count was also ob-
served between LR only and DFS and is 74.37%.

Algorithm Median Mean Std
DFS 1.43e+04 6.71e+04 1.43e+05
LR+DFS 1.79e+03 4.51e+04 1.97e+05
LR 1.63e+02 1.72e+04 8.01e+04
LR16+DFS 5.39e+03 3.53e+04 1.09e+05
LR8+DFS 4.44e+02 2.50e+04 1.27e+05

Table 5: Statistics on number of nodes explored for 50 ran-
dom seeds by the tested algorithms.

Table 6 presents the median, mean and standard deviation
of the time required by each algorithm to solve 50 random
BoF seeds, respectively. The median time consumed by all
of the proposed algorithms except LR was less than DFS.
However, mean and standard deviation time exhausted by
most of the heuristic algorithms was greater than DFS. This
table illustrates that even though heuristics algorithms visit
less number of solutions, they consume more time to play
the game. Further analysis is needed to understand if this
is due to the time required by the LR model for prediction
or sorting the LR predictions with a priority queue. Further-
more, the code was implemented in a higher-level language
to prototype the heuristics rapidly and to emphasize ease of
development and collaboration among research members.

Algorithm Median (s) Mean (s) Std (±s)
DFS 1.10 4.82 10.12
LR+DFS 0.75 42.17 229.34
LR 1.23 47.06 219.38
LR16+DFS 0.68 2.91 8.09
LR8+DFS 0.85 25.58 164.06

Table 6: Statistics on time to solve 50 random BoF seeds by
the tested algorithms.

A simulation of MCTS was performed across 30 random
seeds over a span of 11 hours and 35 minutes, or an aver-
age of 23.16 minutes per seed. The goal node was found for
every seed in 15 node selections, or a total node count of
450. MCTS introduces a compromise between computation
time and number of nodes to the goal. While the compu-
tation time was high compared to the other tested heuristic
algorithms, the node count was significantly lower. Thus, a
combination of MCTS with a model-based heuristic may re-
sult in a better trade-off between time and accuracy. Future
work can combine both approaches such that the heuristic
algorithm executed first until a certain number of cards is
reached, then switch to MCTS for the rest of the game. Since
there is a larger state space with more child nodes at the be-

ginning of the game, running a heuristic first would provide
a quicker way to traverse through the tree to start. MCTS
should provide a strong finish to reach the end in the shortest
number of nodes and will not take as long to run since there
are not as many simulations towards the end of the game.
In contrast, the opposite approach can be taken to execute
MCTS first to provide a confident path to start, and then a
heuristic may take over to quickly reach the goal node. This
approach would take longer to run MCTS at the beginning
of the game, but may result in higher accuracy.

6 Conclusions
In this paper, we presented various solutions to solve the
BoF Research Challenge. We were successful in design-
ing and implementing algorithms such as Monte Carlo tree
search, a heuristic search algorithm using linear regression,
and hybrid search algorithms that incorporate linear regres-
sion and depth-first search. Through extensive testing, we
were then able to compare the efficiency of each algorithm
by studying the time taken to reach a potential solution as
well as the number of nodes visited before a solution was
reached.

The simulations performed indicate that the solely heuris-
tic algorithm, on average, is 74% more efficient than DFS in
terms of nodes visited at the cost of computation time. This
increase in time can be attributed to two factors: (1) the im-
plementation of our heuristics using the built-in data struc-
tures in Python, and (2) the time to compute the features
and predict using our machine learning models. MCTS is
shown to find the solution with the shortest possible number
of nodes when provided with enough simulation. But this
comes at an extremely high computational cost. LR16+DFS
is presented as the recommended approach since it mini-
mizes the computation cost by executing the machine learn-
ing model only once at the beginning of the game, yet it still
reduces the number of nodes visited by DFS to find a solu-
tion.

In future work, a speedup in computation time may be
achieved by optimizing the sorting of the predicted prob-
abilities as priorities or by using a different programming
language. Other MCTS variations or combining MCTS with
a heuristic could be explored to lower the computation time
without sacrificing as much efficiency in node count. In ad-
dition to optimizing the implementation of the proposed al-
gorithms, our research could be expanded by employing an
evolutionary algorithm to design the machine learning mod-
els where the tuning parameters are selected based on min-
imizing a cost function that considers the number of nodes
visited and the corresponding time complexity.

References
Abu-Mostafa, Y. S.; Magdon-Ismail, M.; and Lin, H.-T.
2012. Learning from data, volume 4. AMLBook New York,
NY, USA:.
Auger, D. 2011. Multiple tree for partially observable
monte-carlo tree search. In European Conference on the Ap-
plications of Evolutionary Computation, 53–62. Springer.

9660



Cazenave, T. 2009. Nested monte-carlo search. In IJCAI,
volume 9, 456–461.
Chan, C. 2006. Helping human play freecell.
Coulom, R. 2006. Efficient selectivity and backup operators
in monte-carlo tree search. In International conference on
computers and games, 72–83. Springer.
Coulom, R. 2007. Monte-carlo tree search in crazy stone,”.
Ergezer, M.; Kucharski, B.; and Carpenter, A. 2018. Cur-
riculum design for a multidisciplinary embedded artificial
intelligence course. In 49th ACM technical symposium on
computer science education.
Ergezer, M.; Simon, D.; and Du, D. 2009. Oppositional
biogeography-based optimization. In Systems, Man and Cy-
bernetics, 2009. SMC 2009. IEEE International Conference
on, 1009–1014. IEEE.
Knuth, D. E., and Moore, R. W. 1975. An analysis of alpha-
beta pruning. Artificial intelligence 6(4):293–326.
Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In European conference on machine learn-
ing, 282–293. Springer.
Kucharski, B.; Deihim, A.; and Ergezer, M. 2018.
Birdsoffeatherpython. https://github.com/bryonkucharski/
BirdsOfFeatherPython.
Neller, T. W.; Fisher, A.; Choga, M. T.; Lalvani, S. M.; and
McCarty, K. D. 2010. Rook jumping maze design con-
siderations. In International Conference on Computers and
Games, 188–198. Springer.
Neller, T. W. 2016. AI education: birds of a feather. AI
Matters 2(4):7–8.
Nijssen, J. 2007. Playing othello using monte carlo.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; et al. 2011. Scikit-learn: Machine
learning in python. Journal of machine learning research
12(Oct):2825–2830.
Samuel, A. L. 1959. Some studies in machine learning using
the game of checkers. IBM Journal of research and devel-
opment 3(3):210–229.
Samuel, A. L. 1967. Some studies in machine learning using
the game of checkers. ii-recent progress. IBM Journal of
research and development 11(6):601–617.
Schadd, M. P.; Winands, M. H.; Van Den Herik, H. J.;
Chaslot, G. M.-B.; and Uiterwijk, J. W. 2008. Single-
player monte-carlo tree search. In International Conference
on Computers and Games, 1–12. Springer.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; et al. 2017a. Mastering chess and shogi by self-play with
a general reinforcement learning algorithm. arXiv preprint
arXiv:1712.01815.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017b. Mastering the game of go without human
knowledge. Nature 550(7676):354.

Yan, X.; Diaconis, P.; Rusmevichientong, P.; and Roy, B. V.
2005. Solitaire: Man versus machine. In Advances in Neural
Information Processing Systems, 1553–1560.

9661


