
The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-19)

Efficient Solving of Birds of a Feather Puzzles

Todd W. Neller, Connor Berson, Jivan Kharel, Ryan Smolik
Gettysburg College

{tneller,bersco01,kharji01,smolry01}@gettysburg.edu

Abstract

In this article, we describe the lessons learned in creating
an efficient solver for the solitaire game Birds of a Feather.
We introduce a new variant of depth-first search that we call
best-n depth-first search that achieved a 99.56% reduction in
search time over 100,000 puzzle seeds. We evaluate a number
of potential node-ordering search features and pruning tests,
perform an analysis of solvability prediction with such search
features, and consider possible future research directions sug-
gested by the most computationally expensive puzzle seeds
encountered in our testing.

Introduction
Birds of a Feather (Neller 2016) is an original perfect-
information solitaire game played with a standard 52-card
deck. After shuffling, the player deals the cards face-up into
an r-by-c grid of cards. In this paper we focus on the case
where r = c = 4.

The object of Birds of a Feather is to move all grid cards
into a single stack. Think of each grid cell as initially con-
taining a 1-card stack. A stack may be moved on top of an-
other stack in the same row or same column if the top cards
of the two stacks have the same suit, the same rank, or ad-
jacent ranks. Aces and kings are considered low and high,
respectively, and are non-adjacent to each other.

For example, consider the initial game state shown in Fig-
ure 1(a). Having the same rank in the same column, the
JS (Jack of Spades) stack can move onto the JC (Jack of
Clubs) (Fig. 1(b)). Having adjacent rank in the same col-
umn, the TS (Ten of Spades) stack can move onto the 9H
(9 of Hearts) (Fig. 1(c)). Having the same suit in the same
row, the JS stack can move onto the 5S (Fig. 1(c)). We can
solve this deal, moving all cards into a single stack, with
this sequence of moves: JS→JC, TS→9H, JS→5S, KS→3S,
KS→KC, JS→KS, JS→TS, 6H→7D, 6H→5C, 6H→8H,
QH→AH, QH→TH, QH→3H, QH→JS, QH→6H.

In this work, our objective was to create an efficient search
algorithm that would enable us to speedily find a puzzle
solution or, through unsuccessful complete search, demon-
strate that no solution exists.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We begin by defining search feature terms used in our
experimental work. Next, we evaluate the search time per-
formance of various search algorithms. A state solvability
dataset is then described and used to evaluate our defined
search features, both singly and in combination with one an-
other as suggested by regression of solvability onto feature
subsets. Next, we turn attention to the use of features for
accurate prediction of state solvability. Finally, we examine
some of the puzzle seeds that were most computationally
expensive for our best solver and consider future research
directions suggested by observations of such puzzles.

Search Features
Our baseline for search comparison is the performance of
iterative, stack-based, depth-first search (DFS). Before de-
scribing our variations and experimental results, we first
need to define the terms and features we make use of in
search pruning and node ordering.

Two cards are said to be flockable if they have the same
suit, the same rank, or adjacent ranks. A flockability graph
is a graph where each node corresponds to the top card of
a stack, and there is an edge between two nodes if and only
if the two corresponding cards are flockable. We will refer
to the total number of flockability graph edges as a measure
of total flockability of the game state, which we will also re-
fer to as state flockability. Card flockability is the degree of
a card’s node in the flockability graph. Flockability is dif-
ferent from number of legal moves since we ignore same-
row/-column constraints in flockability in order to gain an
expectation of the number of legal moves in future states,
i.e. the Chess game concept of mobility.

The flockability graph structure can indicate unsolvabil-
ity of a state. We define an odd bird to be a card on the
game grid that can never be flocked with another card, i.e.
having a flockability graph node degree of 0. A flockability
graph with an odd bird indicates an unsolvable game state.
More generally, a separated flock exists when the flockabil-
ity graph has more than one graph component, i.e. two or
more disjoint sets of cards can never flock with each other.

Another flockability graph feature of interest was its min-
imum degree, i.e. the number of cards flockable with the
least flockable card. In the extreme case with a minimum
degree of 0, we have an unsolvable odd bird state. Thus, one
would expect states with a greater minimum degree to be

9686

(a) Initial state (b) After JS→JC (c) After TS→9H (d) After JS→5S

Figure 1: Example Birds of a Feather moves

more likely to be solvable, presenting more future options
for moving any given card.

Another measure more specific than flockability is the
number of legal move card pairs each state has, referred to as
state mobility. One can also think of mobility as the number
of edges on the mobility subgraph of the flockability graph.
The mobility per card feature provides a measure of relative
mobility that scales across play from opening to endgame.
We also make use of what we call the mobility-flockability
ratio of a state, defined as the ratio of mobility to flockabil-
ity. In other words, a state’s flockability ratio is the fraction
of flockable pairs that share the same row or column.

The feature rank cluster count is the number of groups
of contiguous adjacent ranks that exist among the remaining
cards. If one plots a histogram of occurring ranks, the rank
cluster count is the number of disjoint contiguous ranges of
occurring ranks. This feature provides a rough measure of
how much we must rely on shared suits to flock remaining
cards. For example, the board in Figure 1(a) has a rank clus-
ter count of 3. This initial state has all ranks except 2 and 4.
This separates the Ace from the 3 and the 3 from the large,
contiguous rank cluster of 5 through King.

The feature rank deviation is the standard deviation of the
rank distribution when representing successive ranks as suc-
cessive integers. Whereas rank cluster count gives us a mea-
sure of contiguity for flocking among ranks, rank deviation
gives us an idea of how we are progressing at eliminating
extreme ranks and working towards a single narrow range
of ranks.

The suit dominance feature is the difference of fractions
of cards occurring in the most- and least-frequently occur-
ring suits. For example, if the most- and least-frequently oc-
curring suits are clubs and diamonds with 4 cards and 1 card,
respectively, out of a total of 10 cards, then the suit domi-
nance feature would be 4

10 −
1
10 = 3

10 . The least-frequently
occurring suit fraction need not be non-zero; if a suit is not
represented, i.e. has a fraction of 0, we still treat that as the
least-frequently occurring suit. This helps to determine the
dominance of one suit over others on the board.

One of the more computationally complex features com-
puted was the state flockability diameter, hereafter referred
to as the diameter. Diameter is the maximum eccentric-
ity of any vertex in the flockability graph, which can be
thought of as the largest minimum number of moves needed
to flock two cards together. The diameter of the flockability
graph was computed as the maximum entry in the all-pairs
shortest-paths distance matrix of the Floyd-Warshall algo-
rithm (Cormen et al. 2009, §25.2).

Comparing Search Algorithms
As a search problem, Birds of a Feather puzzles have a
few important characteristics. First, repeated state detection
is important. Combinatorially many paths may lead to the
same state, so efficient search will cache states known to
be unsolvable. Second, whereas naı̈ve uninformed search
would run into memory problems with such caching, ju-
dicious pruning allows us to prove states unsolvable with-
out excessive memory requirements. Third, all goal nodes
of search, i.e. single-stack solutions, are found at the same
depth, as with classic Peg Solitaire puzzles (Beasley 1985).
Thus, depth-/cost-minimizing search algorithms such as A*,
recursive best first search (Korf 1993), iterative deepening,
or similar search algorithms (Russell and Norvig 2009) are
not relevant for this problem domain. Of greater interest for
this domain is the prioritization of search nodes that are
more likely to be solvable.

Given such search problem characteristics, we imple-
mented an iterative, stack-based depth-first search, a recur-
sive, lazy-evaluation depth-first search, a best-first search, a
depth-first search with node ordering, and a search algorithm
that we refer to as best-n depth-first search.

Our search algorithm pruning came through combinations
of three different methods: (1) caching searched states and
avoiding repeated states, (2) eliminating odd bird states, and
(3) eliminating separated flock states. All of our search al-
gorithms make use of (1), hashing states that are unsolvable.
We will see the impact of the latter two pruning methods
with different search algorithms.

9687

We check for odd birds by initializing three lists prior to
search, each indexed by an integer card identification num-
ber. The flockabilityLists is a list of lists of card numbers.
The list at a card ID index contains all other cards flock-
able with that card. This is immutable throughout search.
A boolean array isPresentArray is true at a card ID index
if and only if that card is currently on the board. The most
important structure for our pruning computations is an ar-
ray of integers named flockability. This array is initialized
as each card’s flockability. All cards that are not currently
on the board are initialized with value -1. By using the
flockabilityLists and the isPresentArray, we can easily up-
date the flockability array throughout search. If a card is no
longer present on the board, its value becomes -1 and all
cards flockable with that card has its flockability array decre-
mented. A zero value in the flockability array thus indicates
the presence of an odd bird.

Basic Depth-First Search: Using the odd bird feature,
children of nodes were pruned upon expansion into the next
generation. On a test of 15,000 seeds, the inclusion of our
odd bird check decreased the basic DFS code’s average solve
time per seed from 1,212 ms to 133 ms. Even with the uti-
lization of the odd bird check on root nodes only, the average
solve time per seed decreases from 1,212 ms to 556 ms.

Since separated flock states are unsolvable, we can prune
such states in search. Our average search time per seed over
15,000 seeds decreased from 1,212 ms to 61.5 ms when chil-
dren were pruned based on separated flocks only. Similarly,
when only root nodes were pruned for separated flocks, the
average time was 502 ms per seed. Specific seeds proved dif-
ficult for our algorithm to solve prior to introducing the sep-
arated flocks check. For example, an instance of separated
flocks, seed 1,264, took 192,185 ms to complete the unsolv-
able search. After introducing the separated flock check and
hybrid search, the time taken for this unsolvable search was
negligible (< 1 ms).

The individual use of the odd bird check and separated
flocks checks each provided large improvements to the per-
formance of our basic DFS search algorithm. However,
when these checks were utilized together, another decrease
was found, albeit a smaller improvement. Separated flock
checking subsumes simpler odd bird checking, so one might
think that performing both would be redundant and detri-
mental to search, yet combination of both checks with odd
bird checking first and short-circuit evaluation decreased the
average time per seed slightly to 59.8 ms.

Recursive Depth-first Search: One improvement we can
make on iterative stack-based depth-first search is to perform
lazy evaluation on node expansion and implement it as a re-
cursive depth-first search that searches non-pruned children
as they are generated, potentially saving the computational
cost of fully expanding a node, generating children that are
never searched. Whereas basic DFS averaged 1,212 ms per
seed, this improvement reduced average search time to 143
ms over 100,000 seeds.

Best-First Search: Our work so far has focused on vari-
ants of depth-first search algorithms that have improved our

search time. A different use of guided search methods was
considered in our work by applying a best-first search al-
gorithm to our problem. By both pruning our nodes for un-
solvable states and ordering our nodes based on the ratio of
flockability to number of cards, we used this feature to guide
the best-first search, leading it to an average search time of
141 ms over 100,000 seeds. The use of best-first search re-
sulted in a slower speed when compared to improvements to
the basic depth-first search algorithm. Observing better per-
formance of basic depth-first search with pruning, we sub-
sequently limited our focus to depth-first search algorithms.

Depth-first Search with Node Ordering: We next exper-
imented with a node ordering heuristic with pruning. This al-
gorithm, referred to here as DFS with node ordering, sorted
children based on state flockability. A base test for DFS with
node ordering and pruning based only on a set of cached
states was too slow to allow for adequate data collection.
When odd bird pruning was added, the average time dropped
to 50.17 ms. The use of the separated flocks check individ-
ually also lowered the average time to 13.58 ms. The use
of both features combined with short-circuit evaluation low-
ered the average time to 10.06 ms.

Best-n Depth-first Search: We next created a variant of
depth-first search called best-n depth-first search that dif-
fers from a straightforward depth-first search with heuris-
tic node-ordering by allowing alternative backtracking order
that may include local unsearched ancestors. This algorithm
is described as Algorithm 1.

Best-n depth-first search maintains a global search stack
S to manage backtracking and ensure search completeness
as usual, but manages forward search in small batches we
will term cohorts that are queued in Q. When a non-closed,
non-goal node is removed from Q, it is expanded and its
unpruned children are sorted via priority queue PQ accord-
ing to a node-ordering metric and placed on S. Cohorts are
formed by popping up to n nodes from S that have the same
heuristic value as the top stack node. These are enqueued
in Q and search continues until Q and S are empty. In our
implementation, we set n = 4.

Note that a cohort may include nodes of different depths
that share a common heuristic value. Since these nodes as
a group have their unpruned children added to the global
stack, and the last node from the queue may be of a lesser
depth than the first, search order is not strictly depth-first,
but rather depth-first by cohort. A cohort’s children are com-
pletely searched before backtracking via the search stack.

As before, we prune nodes that have been already
searched, are odd birds, or are separated flocks. Pruning
techniques when used in the best-n DFS algorithm resulted
in further search time reductions from DFS with node order-
ing. When the odd bird test is utilized on 15,000 seeds, the
average time decreased to 42.41 ms. Furthermore, the use
of the separated flocks as a pruning technique decreased the
average time to 7.01 ms. The use of both odd bird and sep-
arated flocks for pruning resulted our lowest average time
at 5.32 ms. From the basic DFS average time per seed of
1,212 ms, best-nDFS with both odd bird and separated flock
pruning reduced average time per seed to 5.32 ms, a 99.56%

9688

Algorithm 1 Best-n Depth-First Search

1: Input: root search node, cohort size n
2: Output: whether or not a goal node is found
3:
4: function search(rootNode, n):
5: Closed ← {} {set of searched states}
6: Q← [rootNode] {cohort search queue}
7: S ← [] {global search stack}
8: PQ← [] {cohort children priority queue}
9: while Q not empty do

10: while Q not empty do
11: node ← Q.dequeue()
12: if node 6∈ Closed then
13: Closed ← Closed ∪ {node}
14: if node is a goal node then
15: return true
16: end if
17: enqueue into PQ unpruned children of node
18: end if
19: end while
20: while PQ not empty do
21: S.push(PQ.dequeue()) {leaving heuristically pre-

ferred children of Q cohort on top of S}
22: end while
23: if S not empty then
24: v← heuristic value of S top node
25: enqueue into Q cohort of up to n popped items of

S with a heuristic value equal to v
26: end if
27: end while
28: return false

Search Algorithm Time (ms)
seed

Basic DFS 1212
. . . with odd bird pruning 133
. . . with separated flock pruning 61.5
. . . with both prunings 59.8
Recursive DFS 143
Best-First Search (Flockability/Card) 141
DFS with node ordering, odd bird 50.17
. . . with separated flock pruning 13.58
. . . with both prunings 10.06
Best-n DFS with odd bird pruning 42.41
. . . with separated flock pruning 7.01
Best-n DFS with both prunings 5.32

Table 1: Search algorithm time per seed for 100,000 seeds,
except for the following algorithms tested with 15,000
seeds: basic DFS, DFS with node ordering and odd bird
pruning, and best-n DFS with odd bird pruning.

reduction.

Solvability Dataset
In future experimental sections, we made use of a dataset
of 1,230,606 Birds of a Feather non-terminal game states
labeled with 0 (unsolvable) or 1 (solvable). These were gen-
erated from 10,000 puzzle seeds starting with seed 1100. For
a given seed, the initial state is searched, labeled as solvable
or not, and added to the dataset. If the puzzle is not solvable,
we then proceed to the next puzzle seed.

For solvable puzzle seeds, we perform the following itera-
tive process. For each state, we generate all children, search
all children and label each as solvable or not. If there ex-
ists an unsolvable state among the children, all children and
labels are added to the dataset. However, if all children are
solvable, the decision at that state is not important, so we
exclude them from the dataset. A random solvable child is
then chosen as the next state. This process is repeated until
the solvable puzzle is solved.

Through such selective random sampling, we achieve a
reasonable representative sample of solvable and unsolvable
game states that one might be presented with in critical deci-
sions while playing through 10,000 puzzles. We found that
this sampling method also achieved a reasonably balanced
sample of 572,718 solvable states and 657,888 unsolvable
states.

Feature Selection for Solvability Prediction
Overall Feature Performance
One of our research foci was to determine the performance
of subsets of features for the prediction of state solvability
using logistic regression. We were also interested to deter-
mine which single feature best predicts solvability of Birds
of a Feather game states. In order to determine best feature
subsets, we took the aforementioned solvability dataset and
augmented each entry with features normalized by [0, 1]-
scaling. We then utilized exhaustive selection of feature sub-
sets, performing logistic regression on each subset to predict
solvability. Among these, we observed which feature subset
and which single feature minimized p-values, suggesting a
strong prediction of solvability.

Our best subset of features for solvability prediction is the
combination of mobility per card, state flockability, mobil-
ity, mobility-flockability ratio, minimum degree of flockabil-
ity, rank cluster count, rank deviation, suit dominance, and
diameter. Logistic regression on this specific feature sub-
set followed by rounding to a 1 (solvable) or 0 (unsolvable)
prediction gives us an accuracy of 75.45%. This was a 1%
improvement over what we had with these same features but
excluding diameter.

Although we were surprised to see that diameter alone
did not prove to be a significant predictor of solvability, it
yielded some consistency in exhaustive feature search. Prior
to introducing diameter the predictions resulting from step-
wise selection on sorted depths varied between mobility per
card, minimum degree, and flockability. After introducing
diameter as a feature, this variation no longer existed and

9689

Features Coef. z-value pr(>|z|)
Intercept -4.498 -234.552 < 2e-16
Mobility per card 7.678 197.347 < 2e-16
State flockability 0.062 141.963 < 2e-16
Mobility -5.659 -68.492 < 2e-16
Mobility-flockability ratio 3.104 117.893 < 2e-16
Minimum degree 1.133 44.359 < 2e-16
Rank cluster count -1.829 -112.133 < 2e-16
Rank deviation -0.449 -21.253 < 2e-16
Suit dominance 2.875 162.962 < 2e-16
Flockability diameter -0.019 -0.766 0.444

Table 2: Coefficients of features used for logistic regression
yielding our best accuracy of 75.45%.

mobility per card was predicted as the best single feature at
each depth.

Surprisingly, our best single feature for prediction of solv-
ability was mobility per card. This contradicted our original
hypothesis that state flockability would be the best feature
for predicting solvability. Solvability prediction using mo-
bility per card alone as a feature resulted in an accuracy of
70.64%. Comparing this to our best feature combination ac-
curacy of 75.45% above, we see that mobility per card ac-
counts for much of the accuracy attainable with these fea-
tures.

Feature Performance by Depth

We became curious if mobility per card still offered the best
feature for prediction of solvability when regressing sepa-
rately for each node depth. In order to obtain such infor-
mation, we partitioned our dataset by number of cards, i.e.
with different depths from 2 to 14. We then used exhaustive
search for feature selection at each depth, giving us informa-
tion on best features at each depth. We found that mobility
per card was still the best feature for all depths.

Before we introduced diameter, state flockability was
most frequently the best single feature that appeared on step-
wise selection. It is also important to note that for a majority
of depths it was state flockability that turned out to be the
second best single feature as suggested by exhaustive search.
Although state flockability was not found to be the best sin-
gle feature as frequently as it had been without the inclusion
of the diameter feature, it remained one of the our prominent
predictors correlating with solvability.

We were also interested in finding whether there existed
features that would act in contrast at differing depths when
we regressed solvability onto them. Our answer to the ques-
tion lay in the effect that the suit dominance had on solvabil-
ity at different depths. For prediction, we rounded the output
of logistic regression to 1 (solvable) and 0 (unsolvable). We
found that the feature suit dominance had a positive coeffi-
cient on regressing solvability to it when we have a relatively
shallow depth, e.g. 2 or 3, but the feature had a negative co-
efficient when when we have relatively great depth, e.g. 12
or 13.

Feature Selection for Performance
After determining the best algorithm for searching Birds
of a Feather puzzles and the best features based on pre-
dictability of solvability, we determined the best features
for time-based performance. We investigated how different
previously-described search features might yield improve-
ments in node ordering so as to yield further time-based
performance improvements. Whereas our best search algo-
rithm, best-n DFS, ordered nodes only by state flockability,
we now describe experiments that made use of different fea-
tures for node ordering.

Having computed the aforementioned features on the
solvability dataset, we decided to also test combined fea-
tures for the best two and best three features. In order to
accomplish this, we utilized the same process as used in our
previous section Overall Feature Performance. That is, we
perform a brute-force searching of the entire search space
for the features. The output is then the best two or three fea-
tures that we selected.

For each feature test, our nodes were ordered by the nor-
malized value of each respective feature. In the case of mul-
tiple features, we used the logistic regression calculation by
regressing values 1 and 0 for solvable and unsolvable states,
respectively, onto various normalized features and normal-
ized feature sets {x1, x2, . . . , xn} in R in order to find the in-
tercept and parameters {θ0, θ1, . . . , θn} with the maximum
likelihood to predict the solvability of a state using equation:

P (x) =
1

1 + e−(θ0+θ1x1+...+θnxn)

It should be noted that node ordering by P (x) is equiv-
alent to node ordering by θ0 + θ1x1 + . . . + θnxn, as the
logistic function is monotonic.

We next took all possible subsets of state features and
tested them to determine root mean squared error in pre-
dicting solvability of a state. We found the best 2 features
for solvability prediction to be mobility per card and suit
dominance. The best 3 features were mobility per card, suit
dominance, and rank cluster count. However, as shown in
Table 3, search time performance degraded with the addi-
tional computation of these features.

The respective average search time per node of differ-
ent features and feature combinations are shown in Table 3.
Three tests were performed for each feature on 100,000
seeds in order to test variance.

Features compared amongst each other in our time-based
testing allowed us to see whether more accurate predic-
tion of solvability led to more rapid search for solutions.
State flockability had by far the best performance when com-
pared to our basic DFS, lowering average search time from
1,212 ms to 5.3 ms, a decrease of 99.56%. The mobility per
card and suit dominance features produced the second and
third best time decreases with 14 ms and 15 ms, respec-
tively. Moreover, our best two features, mobility per card
and suit dominance, and our best three features mobility per
card, suit dominance, and rank cluster count, both underper-
formed in terms of computational time with respect to our

9690

Features Time/Seed (ms)
State flockability 5.3
Mobility 16.3
Minimum degree 24.5
Mobility per card 14
Mobility-flockability ratio 69
Rank cluster count 45
Rank deviation 23.4
Suit dominance 15
Flockability diameter 115
Best 2 features 29.5
Best 3 features 50

Table 3: Search time per puzzle seed for 100,000 seeds using
different features for node ordering.

best feature state flockability with decreased average search
times of 29.5 ms and 50 ms, respectively. We thus conclude
that the greater accuracy of solvability prediction that can be
achieved with combinations of features does not reduce node
count sufficiently to offset the additional computational cost
of computing these additional features.

Most Difficult Puzzle Seeds
We conclude with an examination of which puzzle seeds
gave our best solver the greatest difficulty, maximizing node
count and time. We begin by examining the unsolvable puz-
zle generated by seed 360,528, resulting in our maximum
node count of 4,013,578:

5S 7D QS 2C
4C AD 8D 5C
QH 7C TC 3C
8C 2D 9C 3D

Our first observation is that QH only flocks with QS which
only has one other flocking possibility with 5S. Thus QS
must come into the same row or column as QH via the 5S or
TC initial positions. We can immediately eliminate QS-5S
as a possibility as it leaves the queens as a separated flock.
However, this does not alone imply unsolvability, as there
could be some means by which the 5S travels to the TC po-
sition while all other cards are eliminated, allowing a penul-
timate QS-5S move downward. This is not the case, but the
lack of solution here is not so straightforward as odd bird or
separated flock checking.

We see a similar difficulty with our second most com-
putationally expensive seed 731,678 with a node count of
3,757,599:

TS AH 5C QH
AS AD 8D QC
2S 3S 2H 3D
9S TD 8S 9D

Here, the only two clubs, 5C and QC, are in the same role
as the two queens of seed 360,528, and the QH is in the
same role as the 5S. 5C and QC must flock, QC-QH results
in immediate separated flocks, but there are many move se-
quences one might search out seeking to eliminate all other

cards, bringing QH to the initial 8D position. These two puz-
zles suggest that one might use such analysis to set up a sub-
goal that would drive search, allowing a different type of
pruning should that subgoal become impossible.

Surprisingly, seed 557,593, the most difficult solvable
seed for our algorithm with a node count of 1,227,449, was
not difficult for us to solve manually:

QH 4S 9H 8C
TC JD QS 9C
7C 9D TH 7D
8D 2C TD 7H

Our solution, “QS-JD QS-4S QH-QS 7C-8D 8C-9C 8C-TC
8C-7C 8C-2C 9H-QH 9H-8C TD-TH 7D-TD 7D-9D 7H-
9H 7H-7D”, begins by noting that spades are rare and the 4S
only flocks with QS, so we initially flock QS over 4S via JD
and flock QH over QS, reducing the number of suits to three.
Finding it easier to visually reason about suit elimination,
we then flock the clubs together and flock over the last club.
From there, the solution is fairly straightforward and under-
constrained. It seems that with this puzzle, as with our most
computationally difficult unsolvable puzzles, the minimum
degree cards suggests a goal-directed approach that would
be beneficial to our heuristic search in such situations.

However, our heuristics make the common case fast, so
one possible future line of work would be to create an
ensemble of search algorithms working in parallel so that
strategies such as these might find or disprove the existence
of a solution faster.

Conclusions
In this work, we first sought to develop a highly efficient
solver for Birds of a Feather puzzles, beginning with an eval-
uation of different search algorithms. Having experimented
with various search algorithms, node ordering with various
search features, and pruning according to odd-bird and sep-
arated flock properties, we first determined that our new
search algorithm, best-n depth-first search performs the best,
reducing basic DFS search time per puzzle seed from 1212
ms to 5.3 ms, a 99.56% decrease in search time. Algorithm
1, best-n depth-first search, organizing DFS by cohort and
orders cohort children according to state flockability.

We next developed a solvability dataset and performed a
study of a wide range of potential features for node ordering,
employing exhaustive selection with respect to speed per-
formance measurements. To our surprise, our initial single
feature of state flockability proved best for node ordering.

Shifting our question toward that of correctly predicting
solvability of states, we learned that state flockability is gen-
erally outperformed by the mobility per card feature, and
that this superior prediction performance holds for all depths
of search.

Finally, we took a closer look at the puzzle seeds which re-
quired the most computation from our best solver algorithm,
gaining insight to common structures seen in both solvable
and unsolvable puzzle seeds that are computationally expen-
sive.

Given that (1) our average performance is greatly im-
pacted by such computationally expensive outliers, and (2)

9691

common structural features appear in such outliers, we ex-
pect that future work on parallel subgoal-directed search
algorithms could further improve upon what is already a
considerable more efficient search algorithm for Birds of a
Feather.

Acknowledgments
This work was supported, in part, by the Cross-Disciplinary
Science Institute at Gettysburg College (X-SIG) and the
Symposium on Educational Advances in Artificial Intelli-
gence.

References
Beasley, J. 1985. The ins and outs of peg solitaire. Recre-
ations in mathematics. Oxford University Press.
Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; and Stein, C.
2009. Introduction to Algorithms, Third Edition. The MIT
Press, 3rd edition.
Korf, R. E. 1993. Linear-space best-first search. Artif. Intell.
62(1):41–78.
Neller, T. W. 2016. AI education: Birds of a feather. AI Mat-
ters 2(4):7–8. Accessed 2018-08-07 via https://sigai.acm.
org/static/aimatters/2-4/AIMatters-2-4-03-Neller.pdf.
Russell, S., and Norvig, P. 2009. Artificial Intelligence: A
Modern Approach. Upper Saddle River, NJ, USA: Prentice
Hall, 3rd edition.

9692

