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Abstract

In this article, we describe a computer-aided design process
for generating high-quality Birds of a Feather solitaire card
puzzles. In each iteration, we generate puzzles via combina-
torial optimization of an objective function. After solving and
subjectively rating such puzzles, we compute objective puz-
zle features and regress our ratings onto such features to pro-
vide insight for objective function improvements. Through
this iterative improvement process, we demonstrate the im-
portance of the halfway solvability ratio in quality puzzle de-
sign. We relate our observations to recent work on tension in
puzzle design, and suggest next steps for more efficient puz-
zle generation.

Introduction
Birds of a Feather (Neller 2016) is an original perfect-
information solitaire game played with a standard 52-card
deck. After shuffling, the player deals the cards face-up into
an r-by-c grid of cards. In this paper we focus on the case
where r = c = 4.

The object of Birds of a Feather is to move all grid cards
into a single stack. Think of each grid cell as initially con-
taining a 1-card stack. A stack may be moved on top of an-
other stack in the same row or same column if the top cards
of the two stacks have the same suit, the same rank, or ad-
jacent ranks. Aces and kings are considered low and high,
respectively, and are non-adjacent to each other.

For example, consider the initial game state shown in Fig-
ure 1(a). Having the same rank in the same column, the
JS (Jack of Spades) stack can move onto the JC (Jack of
Clubs) (Fig. 1(b)). Having adjacent rank in the same col-
umn, the TS (Ten of Spades) stack can move onto the 9H
(9 of Hearts) (Fig. 1(c)). Having the same suit in the same
row, the JS stack can move onto the 5S (Fig. 1(c)). We can
solve this deal, moving all cards into a single stack, with
this sequence of moves: JS→JC, TS→9H, JS→5S, KS→3S,
KS→KC, JS→KS, JS→TS, 6H→7D, 6H→5C, 6H→8H,
QH→AH, QH→TH, QH→3H, QH→JS, QH→6H.

Our paper begins with an outline of our design method-
ology and definitions of puzzle features we found to be of
potential interest through our process. We then share our ex-
perience of the iterative design process and what we learned
about the most important features to optimize for quality
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puzzle design. Next, we relate our insights to recent work in
characterizing tension in puzzle design. Finally, we suggest
future work that could make our puzzle generation algorithm
more efficient.

Objective and Methodology
The objective of this work was to create an algorithm to
generate high-quality Birds of a Feather puzzles for vary-
ing numbers of cards within a 4-by-4 card grid. We envi-
sion the implementation of a puzzle application where the
player progresses through puzzles with greater numbers of
cards (up to 16) as they meet success with puzzles having
smaller numbers of cards. Thus, we are faced with two pri-
mary challenges: (1) defining a measure of puzzle quality,
and (2) generating such puzzles efficiently.

We first describe our general approach before delving into
specifics. Our puzzle generation methodology is similar to
that of (Neller et al. 2011), in which puzzle generation is
approached as a combinatorial optimization in the space of
possible puzzles:

1. Define an objective function measure of puzzle “badness”
that we seek to minimize.

2. Generate a set of puzzles by taking randomly generated
initial puzzles and approximately optimizing them for
a fixed number of iterations of stochastic local search
(SLS) (Hoos and Stützle 2004).

3. Manually solve this set of generated puzzles and rate
them according to our subjective enjoyment of their chal-
lenges. If we are satisfied with the puzzle quality, we ter-
minate design.

4. Look for relationships between our subjective puzzle rat-
ings and objective puzzle features in order to gain insight
into what would improve our objective function. We then
redefine our objective function, possibly introducing new
features or re-weighting previous features according to
such insight.

5. Return to step 2.

We now describe our step-by-step process in greater de-
tail. The objective function we minimize is referred to as
our energy function using the energy-minimization physics
analogy of simulated annealing. In our very first iteration,
we began with the simplest of puzzle energy (“badness”)
measures, defining a two-valued measure with a high (1000)
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(a) Initial state (b) After JS→JC (c) After TS→9H (d) After JS→5S

Figure 1: Example Birds of a Feather moves

or low (0) value for unsolvable or solvable puzzles, respec-
tively. Unsolvability is the most undesirable feature of any
puzzle, so seeking to create unbiased solvable puzzles is a
reasonable starting point.

For the next step of our process, our choice of SLS
algorithm was a probabilistic iterative improvement algo-
rithm called Hill-Descent with Random Uphill Steps (Neller
2005). The stochastic local step mutates our current puzzle
state in one of two ways: For 30% of local steps, we swap a
random unused card in for a random card of our puzzle. The
other 70% of local steps consist of swapping a random card
in our grid with another grid location’s contents (empty or
not).

After this local step to a next state, the next state energy
is evaluated. If it is found to be greater (i.e. worse) than the
previous state, we accept it with probability 0.005, and reject
it otherwise, reverting to our previous state. This is repeated
for 2500 iterations for fewer than 10 cards, 800 iterations for
10 to 12 cards, and 50 iterations for more than 12 cards.

After repeated applications of such puzzle generation
through optimization with SLS, we collected a new set of
puzzles. We then used a graphical user interface for manual
solution of these puzzles. We solved each puzzle, recorded
our rating on a scale from 0 to 10, and logged our puzzle ob-
servations as plain text. This subjective data was then stored
into a comma-separated value (CSV) data file along with ob-
jective computed puzzle feature data as described in the next
section. In each of these phases we collected between 15 and
40 puzzle ratings.

We next computed a linear regression of our ratings on
our normalized numeric features and noted regression coef-
ficients. Since puzzle solution and rating is a laborious pro-
cess and sample sizes are relatively small, we found sam-
ple sizes insufficient to demonstrate statistical significance
for prediction of ratings using puzzle features. Nonethe-
less, the feature coefficient signs were consistent with the
(un)desirability of features, and the coefficient magnitudes
helped us to both determine the relative importance of nor-
malized puzzle features and suggested improvements to our

energy function. We would also observe that puzzle solv-
ing skill, puzzle preferences, and puzzle ratings may change
over a person’s experience of a puzzle, yet this data-driven
approach nonetheless provided a meta-level iterative im-
provement process for puzzle design.

If the suggested improvements to our energy function
did not correlate with our subjective puzzle preferences, we
looked to add to or adjust our weightings of objective puz-
zle features in order to more accurately model our subjec-
tive preferences. Finally, we returned to puzzle generation,
repeating this iterative process until we were satisfied with
puzzle quality.

Puzzle Features of Interest
In order to generate puzzles through optimization, one must
carefully design the objective function for optimization. The
development of our function explored multiple features of
puzzle states. In this section, we define and discuss these
features.

Two cards are said to be flockable if they have the same
suit, the same rank, or adjacent ranks. A flockability graph
is a graph where each card is a node and there is an edge be-
tween two nodes if and only if the two corresponding cards
are flockable. The average flockability of a game state is
the total number of flockability graph edges divided by the
number of cards in the grid. Flockability is different from
legal move relations in that we ignore same-row/columns
constraints in order to gain an estimate of future “mobility”
in play.

Suit frequency, i.e. how often a suit occurs in the puzzle,
allows for helpful measures of state suit diversity. A puz-
zle that has a high frequency of a particular suit and low
frequency of all remaining suits is uninteresting because a
sweep of same-suit plays often allows for a simple, uninter-
esting solution. We use suit frequency to calculate the dom-
inant suit ratio, which is the suit with the highest frequency
divided by the total number of cards on the grid. We use this
ratio as one measure of card diversity.

9694



One can also use characteristics of a subgraph of the
flockability graph based on same/adjacent rank, called the
rank-flockability graph. Cards in the same rank cluster share
a connected component of the rank-flockability graph. For
example, the cards 2D, 3C, and 4H would all be in the same
rank cluster. The number of rank clusters is a significant fea-
ture that contributes to the flockability because fewer rank
clusters means that cards have more connections based on
rank.

The solvability ratio of a puzzle state is a feature of great
importance. More specifically, we refer to the depth d solv-
ability ratio as the ratio of solvable to total states after d
moves. When d = bn2 c, where n is the number of initial
cards, we call this the halfway solvability ratio. If the ra-
tio of solvable to total states is high/low at a certain depth,
it means that there is a high/low probability that a random
legal move will lead to a solvable state. In order to calcu-
late this ratio, we perform a full search that prunes repeated
states.

Experimental Results
Throughout our experimentation, we changed our feature set
and objective function over time so as to generate more inter-
esting puzzles. In this section, we will discuss the evolution
of our objective function, which we refer to as our energy
function.

Iteration 1: Suit Diversity, Rank Diversity
We started our process by generating and solving 5 different
4-card-puzzles and 5 different 5-card-puzzles. These puzzles
were generated with solvability as the only criterion. After
solving each puzzle, we recorded our thoughts on the qual-
ity of the puzzle. We came across two 4-card-puzzles that
yielded insights. One of the 4-card-puzzles had the cards 4D,
4S, 4H, and 4C. The other 4-card-puzzle had the cards 5H,
9H, TH, and KH. From these two puzzles, we observed that
puzzles with a low suit diversity or a low rank diversity are
uninteresting because their solution tends to be trivial.

We thus introduced the features of suit diversity and rank
diversity as our first preferred features in our objective func-
tion. The energy was calculated with the suit diversity, rep-
resented by the number of different suits, and the rank di-
versity, represented by the number of different ranks. For all
of our energy functions, we continue to assign a fixed en-
ergy value of 1000 for unsolvable states. However, for our
next energy function, solvable state energies are computed
by modifying a base energy value of 0 as follows:

• If the number of suits > 1 and the number of suits < the
total number of cards, subtract 10 from the energy value.

• If the number of ranks > 1, subtract 10 from the energy
value.

Using our new energy function, we generated puzzles and
repeated the process of puzzle solving and subjective data
collection. We solved 9 different 5-card-puzzles and 6 dif-
ferent 6-card puzzles. We collected our data on these puzzles
along with our own personal ratings from 0-10, with 0 be-
ing a low rating and 10 being the highest rating. Each rating

Features Coefficients Std. Error
Intercept 2.7273 5.6351
Suit Diversity -0.1515 1.1937
Rank Diversity 0.9091 0.9571

Table 1: Regression coefficients for iteration 1.

was saved along with the features preferred in our energy
function. We computed a linear regression of our ratings
on our normalized numeric features. The regression coef-
ficients, shown in Table 1, suggested that we should be max-
imizing the number of different ranks and minimizing the
number of different suits. This regression feedback did not
correlate with our subjective ratings, because we concluded
from our initial puzzle generation that a minimal number of
suits is a bad thing.

Looking back at the different puzzles that we had solved,
we judged that desired card diversity was not modeled well.
We decided that a better feature for expressing desired suit
diversity was the dominant suit ratio. As seen in the follow-
ing 6-card puzzle, a puzzle could have multiple suits repre-
sented, but could still have a high dominant suit ratio.

4D -- -- --
-- 5D 2C 2D
3D -- AD --
-- -- -- --

This puzzle is too simple, as one can same-rank flock over
the one lone suit, followed by a sweep of remaining same-
suit plays. The dominant suit ratio of this puzzle would be
5/6, which we found to be high.

Another feature that we introduced to better represent
rank diversity was the number of rank clusters. We came
to this conclusion that because the 6-card-puzzle above has
multiple different ranks represented but only has one rank
cluster. This creates excess card mobility.

Iteration 2: Dominant Suit Ratio, Number of Rank
Clusters
With the introduction of the dominant suit ratio and the num-
ber of rank clusters, we changed our objective function to
prefer puzzles with a low dominant suit ratio and more than
one rank cluster.

Before we began to generate puzzles and collect more
subjective play data, we introduced 2 new features that
would be calculated for each puzzle. The depth 1 solvabil-
ity ratio and the average flockability were features that we
believed would contribute to the quality of a puzzle. The av-
erage flockability was introduced because it provided a mea-
sure of card mobility. The depth 1 solvability ratio was intro-
duced in an effort to see how crucial the first move was to the
quality of a puzzle. Although our energy function only con-
sidered the dominant suit ratio and the number of rank clus-
ters, exporting all current features of interest would even-
tually yield insight into the development of higher quality
puzzles.

Our observations that quality puzzles have a low dominant
suit ratio and at least one rank cluster led us to the formation
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Features Coefficients Std. Error
Intercept 5.1556 1.9873
Depth 1 Solvability -8.5229 1.7883
Dominant Suit Ratio 3.0158 3.7160
Number of Rank Clusters 0.4377 0.2607
Average Flockability 0.2167 0.4530

Table 2: Regression Coefficients from Iteration 2.

of a different energy function for solvable states, modifying
a base energy value of 0 as follows:

• If the dominant suit ratio < 0.5, subtract 10 from the en-
ergy value.

• If the number of rank clusters > 1, subtract 10 from the
energy value.

Using the energy function above, we generated puzzles
and repeated the process of puzzle solving and subjective
data collection. We solved 4 different 5-card-puzzles, 11 dif-
ferent 6-card puzzles, 5 different 7-card puzzles, 18 differ-
ent 8-card puzzles, and 2 different 9-card puzzles. The com-
puted linear regression coefficients for our normalized nu-
meric features are shown in Table 2.

From the regression in Table 2, we see that the dominant
suit ratio and number of rank clusters both had positive co-
efficients. Although we prefer a higher number of rank clus-
ters, we do not prefer a high dominant suit ratio. Since the
high coefficient for the dominant suit ratio does not coincide
with our subjective preferences, we disregarded the high co-
efficient and kept the preference of a dominant suit ratio less
than 0.5. Since it is a subjective preference to have more
than 1 rank cluster, we decided to keep the condition in our
energy function, preferring puzzles with more than one rank
cluster.

As for the depth 1 solvability ratio, the large negative
coefficient means that the lowest ratios yield the highest
ratings, which correlates with our subjective puzzle prefer-
ences. This coefficient led us to adjust our energy function
in an effort to minimize the depth 1 solvability ratio.

Since the average flockability coefficient had a small pos-
itive magnitude, we looked to our highest-rated individual
puzzle feature data in order to judge a desirable average
flockability. We observed that higher-rated puzzles have an
average flockability between 2 and 4, so we adjusted our en-
ergy function to reflect this observation.

A puzzle that received a high rating with this energy func-
tion is the following:

-- -- KH --
2S -- JD QC
-- -- TS JS
-- -- 3C --

This puzzle has 2 rank clusters and has a dominant suit ra-
tio of 3/7. This puzzle had the lowest depth 1 solvability ratio
out of all of the puzzles generated by this energy function.
The regression coefficient for the depth 1 solvability ratio
did not come as a surprise because a puzzle that is initially
more difficult tends to yield a higher subjective rating. The

low depth 1 solvability ratio makes the puzzle very difficult
with many first moves that lead to an unsolvable state.

Iteration 3: Depth 1 Solvability Ratio, Average
Flockability
We observed that high quality puzzles have many possible
missteps within the first few moves. This observation led us
to the introduction of two new features that would be cal-
culated for each puzzle. These features are the depth 2 and
depth 3 solvability ratios.

After adjusting, adding, and reweighting features, our new
energy function begins with a base energy value of the depth
1 solvability ratio times the puzzle size, and modifies this
value as follow:

• If the number of rank clusters > 1 and the dominant suit
ratio < 0.5, subtract 5 from the energy value.

• If 2 ≤ the average flockability ≤ 4, subtract 5 from the
energy value.

Using the energy function above, we generated puzzles
and repeated the process of puzzle solving and subjective
data collection. We solved 5 different 5-card-puzzles, 10 dif-
ferent 6-card puzzles, 9 different 7-card puzzles, and 10 dif-
ferent 8 card puzzles.

Through this iteration, we found that there was a large in-
crease in puzzle difficulty. The following puzzle is an exam-
ple 8-card puzzle generated by the iteration 2 energy func-
tion:

-- -- -- 5S
JD 7C TC 3D
-- TS -- 3S
-- -- -- TH

Compare the previous puzzle to this next example of an 8-
card puzzle generated using the iteration 3 energy function:

-- -- 5D --
4D -- 5H --
-- KD 5C --
9S 9C 4C --

There is a significant difference in difficulty between
these two puzzles. Figure 2 shows us that this difficulty is
related to the low ratio of solvable states. Each puzzle’s bar
chart shows the number of solvable versus unsolvable states
at each depth on a logarithmic scale.

Computing a linear regression of our ratings on our nor-
malized numeric features, we observe the regression coeffi-
cients shown in Table 3.

According to the regression, the depth 2 and depth 3 solv-
ability ratios have a strong negative coefficient.

Looking specifically at the depth 3 solvability ratio, the
majority of the 6- through 8-card puzzles from this genera-
tion were halfway solved at depth 3. We thus hypothesized
that the highest quality Birds of a Feather puzzles have a
low (but not zero) solvability ratio at a depth approximately
halfway to the solution. This observation led us to the intro-
duction of the halfway solvability ratio.
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(a) Iteration 2 puzzle (b) Iteration 3 puzzle

Figure 2: Logarithm of solvable vs. unsolvable game states by depth

Features Coefficients Std. Error
Intercept 10.75160 3.11937
Depth 1 Solvability 2.18117 4.65598
Depth 2 Solvability -8.48164 10.09565
Depth 3 Solvability -12.87851 6.15367
Dominant Suit Ratio 1.87682 3.12199
Rank Clusters -0.07801 0.41600
Average Flockability -1.20047 0.71890

Table 3: Regression coefficients from iteration 3.

Iteration 4: Solvability Ratio at the Halfway Point
Our data showed that the number of rank clusters and the
dominant suit ratio were not as significant as the halfway
solvability ratio. We thus created our new energy function
to largely consider this ratio, but still retain prior useful fea-
tures. Our next energy function has a base energy value of
1000 times the halfway solvability ratio times the puzzle size
and then modifies this value as follow:
• If the number of rank clusters > 1 and the dominant suit

ratio < 0.5, subtract 10 from the energy value.
• If 2 ≤ the average flockability ≤ 4, subtract 10 from the

energy value.
We repeated our process of puzzle generation with this

new energy function, gave subjective puzzle ratings, and col-
lected feature data. After solving 3 different 6-card puzzles,
7 different 7-card puzzles, 16 different 8-card puzzles, and 5
different 9-card puzzles, we computed a linear regression of
our ratings on our normalized numeric features. The regres-
sion coefficients are shown in Table 4.

According to the regression, the halfway solvability ratio
has a very strong negative coefficient. Given the importance
of this normalized feature, we decided to try only preferring
a minimum non-zero halfway solvability ratio in our energy
function. We found that making this change to our energy
function did not appear to degrade the good perceived qual-
ity of the puzzles generated. Thus, we concluded our itera-
tive design process.

Looking back at our design process, we note that there
were a number of times when a close examination of spe-

Features Coefficients Std. Error
Intercept 11.2486 2.5070
Depth 1 Solvability 3.0164 2.8270
Halfway Solvability -40.7491 27.9119
Dominant Suit Ratio -3.0697 2.3928
Rank Clusters 0.2660 0.4185
Average Flockability -1.0141 0.6472

Table 4: Regression coefficients from iteration 4.

cific puzzle instances and ratings caused us to disregard re-
gression coefficient signs or the seeming relative importance
of a feature. Certainly, our puzzle sample sizes were rela-
tively small and such statistical information may seem of
little value. Nonetheless, we credit these statistical checks
with providing us the “scent” that put us on the trail of the
important halfway solvability ratio that was our key finding.

Puzzle Tension
In this section, we summarize Cameron Browne’s recent ex-
ploration of the concept of puzzle tension (Browne 2017),
characterize our work according to Browne’s classification
system, and show how our observations are in support of his
efforts to formalize a notion of tension in puzzle design.

Popular game designer Wolfgang Kramer noted tension
as a key design factor of good games, introducing a notion
of tension curves, but not going so far as to define a mea-
sure that could be graphed to produce such curves (Kramer
2000). Browne informally described tension as follows:

Tension is related to the amount of impact that players’
choices have on the outcome of the game.

Browne further proposes a simple metric for estimating the
tension T in puzzle state S:

T (S) = 1− MSw

MS

where MS is the number of moves available in S and MSw

is the number of winning moves available in S.
In the context of Birds of a Feather puzzles, we especially

penalize lack of tension at the midgame, i.e. we seek to max-
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imize midgame tension. This recognizes two common fea-
tures of good puzzles we have observed: (1) while there may
be a number of winning initial moves, there need to be many
possible opening blunders to achieve a low ratio of midgame
winning states, and (2) there will be no tension in the last
winning play, as only two winning moves will remain with
the last two stacks flocking together in either direction.

We would observe that many excellent puzzles share an
“hourglass” structure of midgame tension. In difficult Free-
Cell puzzles (Keller 2016), there are often many opening
move sequences leading to highly-constrained, high-tension
midgame play which is followed by low-tension endgame
playout. In difficult Sudoku puzzles, there are often easy
opening play deductions leading to difficult midgame play
deductions which are followed by easy endgame play de-
ductions.

One even sees this hourglass or bottleneck state-space fea-
ture in mechanical take-apart puzzles such as the two-piece
Devil’s Claw1. Watching a video of the solution (tgreenless
2008), we see that the crucial part of the solution is very
constrained. Holding one of the two pieces fixed, we can
describe the relative position and orientation of the other
piece with 6 parameters (e.g. a Euclidean fixed point on the
piece with Euler angles describing the piece orientation with
respect to that point), so that the state space may be rep-
resented as a 6-dimensional maze where maze “walls” are
formed by the sets of infeasible states in which both puzzle
pieces intersect. In this space, movement is somewhat con-
strained at first, until one finds the highly constrained key
movement path apart.

Whether discrete or continuous, many good puzzles ex-
hibit at least some hourglass or bottleneck point of high ten-
sion in its state space. In our experience, this is especially
true of interesting Birds of a Feather puzzles.

In Browne’s puzzle classification, Birds of a Feather puz-
zles are dynamic, i.e. state changes can be further modified,
as in contrast to logic puzzles like Sudoku where a value
filled in may not be changed. As a dynamic puzzle, our solv-
able Birds of a Feather puzzles are classed as interesting, as
opposed to uninteresting trivial (one-move solvable) or un-
solvable puzzles. They are monotonic challenges where “all
state transitions progress towards a solution (or dead-end if
a mistake is made)”. Browne defines a key state as a state
that must be visited on the solution path, and defines struc-
tured and strict monotonic puzzles as those for which some
and all, respectively, of the states on a solution path are key
states. Since our final move on a solution path is necessar-
ily non-unique, our generated Birds of a Feather puzzles are
thus dynamic, interesting, monotonic, structured puzzles ac-
cording to Browne’s taxonomy.

Future Work
As mentioned earlier, the objective of this work was to cre-
ate an algorithm to generate high-quality Birds of a Feather
puzzles for varying numbers of cards within a 4-by-4 card

1a.k.a. Hanayama’s “Cast Devil”, Binary Arts’ “Twin Tangle”,
Professor Puzzle’s “The Menace”, “Double-W”, “Double-M”, and
“M&W Puzzle”,

grid. In our subjective judgment, we believe that we have
succeeded in this via a stochastic local search that minimizes
the halfway solvability ratio. While the simplicity of this in-
sight is appealing, our algorithm is currently slow to gener-
ate full 16-card puzzles on the 4-by-4 grid.

Thus, our immediate future challenge is to increase the
efficiency of our generator for large puzzles. We see two
promising potential paths forward that do not require a com-
plete search in order to provide an approximation of the
halfway solvability ratio. In both cases, we can first apply
the solver of (Neller et al. 2019) to perform a solvability
check with a low average cost of 5.3 ms per random 16-card
deal. While we would expect our difficult puzzles to have a
cost higher than this, we believe that an initial check for a
single solution can help us efficiently determine whether or
not the halfway solvability ratio is nonzero.

One possible approximation method would be to ran-
domly sample midgame states and perform efficient solv-
ability searches on each, caching results to avoid repeated
states across all samples. If we find no solvable midgame
states in our sample, our initial solvability check would guar-
antee the existence of one. Taking this approach, one might
seek to predict the total number of midgame states from the
number of repeated states in our midgame state sample.

Another approximation method would be to perform a
type of beam search, employing state flockability for our
beam heuristic as recommended in (Neller et al. 2019). For
this second approach, we might find all or a large propor-
tion of solvable midgame states, but we would again need
to make use of information from our beam search to predict
the total number of midgame states. For this approach, one
might predict the total number of midgame states from the
product of pruning ratios for each level of the beam search.

Other potential future work might include tuning of the
ratio of different types of local steps and parameters of our
stochastic local search. However, greater efficiency in en-
ergy function computation would be a necessary prerequisite
to such work.

Conclusions
In this work, we have explored the automated generation of
high-quality Birds of a Feather puzzles for varying numbers
of cards within a 4-by-4 card grid. Our basic generation al-
gorithm was a stochastic local search called Hill Descent
with Random Uphill Steps. While the algorithm is simple,
much of the work in such puzzle design is the formation of
the energy function that is minimized when seeking good
puzzle designs.

Each iteration of our design process began with the defi-
nition of an energy function seeking to measure puzzle bad-
ness based on our observations of prior puzzles and (in sub-
sequent iterations) insights from regressing our puzzle rat-
ings on objective puzzle features. We then generated puz-
zles using this energy function, solved them, rated them, and
took notes on what was observed in the design of such puz-
zles. The observations sometimes suggested new features
that might be helpful in the improvement of our energy func-
tion. We then performed a regression of all puzzle ratings
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onto the features of such puzzles in order to suggest changes
to our energy function for the next iteration.

To our surprise, a single feature appears to be our
strongest indicator of puzzle quality. The solvability ratio
of depth d is the ratio of solvable to unsolvable states after
d moves. When d = bn2 c, where n is the number of initial
cards, we call this the halfway solvability ratio. Minimizing
this ratio above zero may be used to generate challenging
high-quality Birds of a Feather puzzles.

This observation affirms Cameron Browne’s recent work
on puzzle tension (Browne 2017) that defines tension in
terms of the fraction of successor states that lead to failure
in solving a puzzle. We have characterized solvable Birds of
a Feather puzzles in his taxonomy as dynamic, interesting,
monotonic, and structured.

We have also suggested steps for future work, most im-
portant of which is increasing the efficiency of computing
the halfway solvability ratio or some approximation thereof
for larger numbers of cards.
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