
 

 

A Monte Carlo Tree Search Player for Birds of a Feather Solitaire  

Christian Roberson, Katarina Sperduto 

Florida Southern College 
croberson@flsouthern.edu, ksperduto@mocs.flsouthern.edu 

 

 

 

Abstract 

Artificial intelligence in games serves as an excellent plat-
form for facilitating collaborative research with undergradu-
ates. This paper explores several aspects of a research chal-
lenge proposed for a newly-developed variant of a solitaire 
game. We present multiple classes of game states that can 
be identified as solvable or unsolvable. We present a heuris-
tic for quickly finding goal states in a game state search tree. 
Finally, we introduce a Monte Carlo Tree Search-based 
player for the solitaire variant that can win almost any solv-
able starting deal efficiently. 

 Introduction   

Games are a good way for students to get involved in the 

intricacies of scholarly research. Games with perfect in-

formation are especially nice because they allow students 

to focus on the rules and strategy of the game without hav-

ing to worry about the inherent uncertainty that comes with 

imperfect information (Rosenthal 1981). One such game 

that has been developed for research is Birds of a Feather 

Solitaire. Much like other variants, this version of solitaire 

requires making a series of moves to combine various piles 

of cards into a single stack. This game is particularly inter-

esting because while most initial configurations of the 

game state are solvable, there are many ways to end up in 

an unsolvable state and lose the game. There are also sev-

eral distinct characteristics of game states that could poten-

tially be used to determine if a state is solvable. 

 This paper is organized as follows. In the Background 

section, we provide an overview of the Birds of a Feather 

game and highlight relevant search algorithms including 

heuristic search and Monte Carlo Tree Search. In the Game 

State Solvability Section, we outline three different charac-

teristics of game states that can be used to identify unsolv-

able states. In the Player section, we describe the structure 

of our AI player for Birds of a Feather. The Results section 

contains experimental tests and validation for our devel-
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oped tools. Finally, we provide some conclusions and pos-

sible avenues for future work. 

Background 

Birds of a Feather Solitaire 

Birds of a Feather is a variant of a classic solitaire game 

proposed as a research challenge for facilitating research 

experiences for undergraduates (Neller 2018). It is played 

with a standard 52-card deck, however out of the 52 cards 

only 16 will be used. Once shuffled, the player deals 16 

cards out face-up in a 4-by-4 grid as shown in Figure 1. 

Each card (or bird) can be moved onto other cards in the 

grid to form a stack of cards (a flock). 

Figure 1: Example initial game state 

 

In this game each position in the grid is considered a stack 

of cards, so in the initial layout each stack or flock has a 

size of one. In order to move one stack on top of another, 

the following conditions must be met: (1) The two stacks 

must be located in the same row or column. (2) The top 

card of each stack must either have the same suit, same 

rank, or adjacent ranks. For this version, aces are consid-

ered to be low and are only adjacent in rank to twos. The 

score for a game state is determined by taking the square of 

the stack size of each remaining column and adding them 

together. For example, if there were a total of three stacks 

remaining: one of size 9, one of size 4, and one of size 3, 

the final score would be 106 (81 + 16 + 9). The ultimate 

goal is to move all 16 cards into a single stack, yielding a 
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maximum score of 16
2
 or 256.  For each initial configura-

tion, or seed, it is highly probable there is a solution, but it 

is not guaranteed. 

 

Heuristic Search 

A common approach to finding solutions to games is to 

create a game tree representing the possible game states 

and moves and use a tree search algorithm to locate a goal 

state (Paul and Helmert 2016). Classic tree search algo-

rithms, like Depth First Search (DFS), blindly expand 

nodes during the search process until either a goal node is 

found or all search options are exhausted (Chijindu 2012). 

This approach can be time consuming, especially if the 

search tree has a high branching factor, is likely to search 

many unnecessary nodes, and the solution it produces may 

not be the optimal solution. One possible improvement to 

an uninformed search is to use a heuristic function to help 

guide the order of node expansion. A heuristic function 

    , takes a node   and returns a non-negative real num-

ber that is an estimate of the cost of the least-cost path 

from node   to a goal node. The function      is an ad-

missible heuristic if      is always less than or equal to the 

actual cost of a lowest-cost path from node   to a goal. 

With a well-crafted heuristic it is likely that a solution can 

be found with significantly less nodes expanded than an 

uninformed search. 

Monte Carlo Tree Search 

Monte Carlo Tree Search (MCTS) is a directed search 

technique that has gained prominence in recent years and 

has been used with success for several types of games such 

as Go (Silver et al. 2016) and Kriegspiel (Ciancarini and 

Favini 2009). The basic algorithm involves an iterative 

construction of a search tree until some computational limit 

is achieved. (Browne et al. 2012). There are four steps per-

formed during each iteration of MCTS: selection, expan-

sion, simulation, and backpropagation. Figure 2 shows the 

structure of each MCTS phase and the search tree associat-

ed. 

Figure 2: Monte Carlo Tree Search Steps1 

   

 The selection phase chooses the next node to expand by 

starting at the root node of the tree and recursively select-

ing optimal child nodes until a leaf node is reached. The 
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optimal child node   is selected to maximize the Upper 

Confidence Bound for Trees (UCT), given as: 

 
where   ̅ is the average reward for child  ,   is the number 

of times the current (parent) node has been visited,    the 

number of times child   has been visited and Cp > 0 is a 

constant used to influence the exploration/exploitation bal-

ance. This ensures that the node with the maximum desired 

quality is chosen next. 

 The simulation phase begins when a node outside of the 

stored MCTS tree is selected during the selection process. 

The basic strategy for this phase is to make random moves 

until a terminal node is reached. In some variations a strat-

egy is applied to determine node selections during the sim-

ulation. 

 The expansion phase grows the stored MCTS tree, typi-

cally by one node. A simple approach is to add the first 

node of the playout phase to the MCTS tree for each simu-

lation that runs. This ensures the tree grows in areas select-

ed during the selection phase because of their increased 

likelihood of being a strong move. 

 The backpropagation phase takes the result of the simu-

lation phase and updates nodes along the selected path in 

the MCTS tree. A common approach is to simply record 

and track the average reward value by examining the ratio 

of games won to games played. A discounting factor may 

sometimes be applied to nodes as the result is propagated. 

 MCTS is used a lot for game algorithms for a few key 

reasons (Chaslot et al. 2008): it requires no tactical 

knowledge of the game, it has the ability to focus on more 

interesting nodes, and it is very easily adaptable. MCTS 

has been adapted for other variations of solitaire (Yan et al. 

2005), but has not yet been applied to Birds of a Feather. 

Game State Solvability 

One focus of our research was to understand what makes a 

particular game state either solvable or unsolvable. We 

have identified several classes of states that classify as 

solvable or unsolvable.  

Stranded States 

A game state is considered stranded if it contains one or 

more stranded cards. A stranded card is a card that is the 

only card in both its row and its column, as long as there is 

more than one card remaining. A card in this state will 

never have another move available to it since cards can 

only be moved in their respective rows or columns. In Fig-

ure 3 the Jack of Spades is stranded because there are no 

cards in the same row or column to move to. 
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Figure 3: State with a stranded card 

 

 To determine if a card is stranded, we first create an un-

directed graph of all the theoretical moves possible in the 

current game state. A theoretical move is defined as any 

move that respects the position rules of the game while 

ignoring any rules about the value of the cards. In this case 

any two cards that occupy the same row or column would 

be a valid theoretical move. We then analyze the theoreti-

cal graph to see if there is more than one component. If 

there is, there are stranded cards and that game state is con-

sidered unsolvable. 

Separated Flock States 

In certain deals of Birds of a Feather, it is possible to end 

up with cards that cannot be moved onto other cards be-

cause they do not meet the suit or rank requirements of a 

legal move with any other cards in the grid. A move that is 

a legal move with respect to rank and suit, but without the 

same row or column constraint for the two cards is called a 

relaxed move. A single card with no relaxed moves is re-

ferred to as an odd bird. It is also possible to end up with 

multiple cards that are connected to each other, but none of 

the cards in this subgroup can be connected to the remain-

ing cards. This is referred to as a separated flock. Odds 

birds are separated flocks of size one. In Figure 4, the Ace 

of Diamonds and the Seven of Diamonds are a separated 

flock because no other cards have relaxed moves (Dia-

monds, Twos, Sixes, or Eights) that connect to either of 

them. In this case it is impossible to combine those cards 

with the remaining cards in this state. 

Figure 4: State with a separated flock 

 

 To determine if a state contains a separated flock, we 

create a graph of the relaxed moves in the current state. If 

the relaxed graph contains more than one component, there 

is a separated flock in the state and it is considered unsolv-

able. 

Lynchpin Cards 

Another interesting group of states are related to cards that 

occupy critical positions on the board, referred to as lynch-

pin cards. A lynchpin card is any card in a game state that 

if moved would lead to at least one card being stranded. 

For example, in Figure 5 moving the Jack of Spades means 

cards in the column cannot be moved into other rows any-

more and cards in the row can’t be moved to another col-

umn. Any move that moves a lynchpin card is unsolvable. 

 If there are multiple lynchpin cards whose only relaxed 

move is to move to another lynchpin card, that state is con-

sidered unsolvable. It is also possible to find a lynchpin in 

an impossible structure. If a lynchpin is connected to two 

or more cards that have a relaxed graph degree of one, it is 

impossible to move all of those cards onto the lynchpin. 

Given that a lynchpin cannot be moved, if any one of the 

multiple connected cards is moved to cover the lynchpin, 

the remaining cards would lose that connection in the 

graph and would therefore have a relaxed move degree of 

zero. These cases are also considered unsolvable as well. 

 

Figure 5: State with a lynchpin 

A Birds of a Feather AI Player 

Another focus of our research was to develop an effective 

player for Birds of a Feather. Given a game state, we first 

applied a simple two-step lookahead to the game tree to see 

if any goal states were present. If so, we would select the 

first child node that moved toward an identified goal state. 

To identify goal states, we developed a solvability checker 

to run each candidate state through for evaluation. If the 

lookahead was unable to find a goal state, we would then 

determine our move by applying a variation of Monte Car-

lo Tree Search. 

Solvability Checker 

Our solvability checker function accepts Birds of a Feather 

game states as input and classifies them into one of three 
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categories: solvable, unsolvable, or unknown. The bulk of 

the solvability checker’s work for identifying unsolvable 

cases comes from analyzing and determining if a game 

state meets one of the discovered classes of unsolvable 

states. Any state that is identified as containing stranded 

cards, separated flocks, or unsolvable lynchpin cards is 

returned as unsolvable. Any two-card case that does not 

fall into these categories is solvable. 

 We also discovered several identifiable subgroups for 

three-card, four-card, and five-card cases that can be used 

to identify solvable or unsolvable states. Each of these 

subgroups was coded into the checker to identify additional 

states. The specifics of these configurations are not includ-

ed in this paper. 

Monte Carlo Tree Search 

For states in which a goal node is not found using the two-

step lookahead, we apply a variation on classic Monte Car-

lo Tree Search to determine which move to play. 

 During the selection phase, our algorithm explicitly re-

quires each child of a node to be explored at least once 

before moving to exploiting the best score when choosing 

the next node to process. This change helps to ensure all 

nodes are at least sampled during the MCTS process. We 

also leverage the solvability checker during the selection 

phase. If a node is classified as solvable, we select that 

node automatically regardless of UCT score. 

 For the expansion phase, whenever a new node is ex-

plored, all of the children of that node are generated and 

added to the MCTS tree. This is primarily a limitation of 

the codebase we used for the project. One of the new chil-

dren would then be selected at random for the simulation 

phase. 

 We also developed a pruning technique to apply to the 

MCTS tree as it is developed. Each node is pre-processed 

through the solvability checker before it is added to the 

MCTS tree. If the node is classified as unsolvable, it is 

thrown away and not added to the tree. If it is either solva-

ble or unknown it is expanded normally. This ensures that 

iterations in the algorithm are not wasted on known un-

solvable nodes in the tree. 

 In the traditional simulation phase, moves are selected at 

random from the available child nodes of the current state 

during simulation of the game. We instead choose to select 

moves during the simulation phase using a heuristic for 

evaluating potential moves.  

Player Heuristic 

To better select moves that would lead us to winning 

states, we developed a heuristic for evaluating and ranking 

potential moves for consideration. While many factors 

were considered, ultimately two factors provided the most 

influence on the quality of a game state: the current score 

of the game state and the number of legal moves in the 

game state. Our heuristic is represented by the following 

formula:  

 
where   represents the game state to examine,  [ ] repre-

sents the stack of cards at position   in the grid of cards, the 

     function determine the size of a stack of cards,    and 

   represent the weights of both factors, the summation 

represents the score of state    and      represents the 

number of legal moves in state  . For our heuristic, higher 

values are considered more valuable states. 

Results 

In this section we present findings for the various aspects 

of our Birds of a Feather Solitaire research. First, we ana-

lyze our heuristic for its efficiency. Next, we provide de-

tails of our solvability checker’s coverage of known test 

data. Finally, we show how our player, which uses both the 

heuristic and solvability checker, performs against a varie-

ty of possible starting seeds of the game. 

Heuristic 

To tune our heuristic, we applied a heuristic search algo-

rithm to the search tree for the first 10,000 seeds of the 

dataset. The weight parameter for the state’s score was 

fixed to 1.0 and the weight for the number of legal moves 

was tuned to find the combination that optimized for the 

lowest average number of nodes expanded across the test 

seeds.  

 

Moves Weight Nodes Exp. 

1.0 387.43 

1.5 197.80 

2.0 117.84 

2.5 102.85 

3.0 128.68 

3.5 185.96 

 

Table 1: Heuristic Evaluation 

 

The optimal value for weighting the legal moves factor 
was 2.5, where we averaged just under 103 nodes expand-
ed per seed. In many cases the number of nodes expanded 
was well under the average, with several more difficult 
cases driving the average up. Our heuristic performs much 
better than a traditional depth-first search approach, with 
DFS averaging 5,274.23 nodes expanded per seed on the 
same dataset. For states early in the game with many stacks 
and a low score, the driving factor in node selection for 
expansion is the number of legal moves. For late-game 
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nodes, the score is significantly more important for node 
selection than the number of legal moves. Our heuristic 
captures this dynamic. 

Solvability 

Included in the research challenge was a dataset for 10,000 
different initial game states. While not every possible state 
for each game was included, the set focused on interesting 
states. An interesting state is defined as a state that in-
cludes both solvable and unsolvable children. Each provid-
ed state was classified as solvable or unsolvable. To vali-
date the different classes of game states identified in our 
research, we ran every state in the provided dataset against 
our solvability checker to determine its effectiveness. 

 

State Class # of States % of Unsolvable 

Stranded Cards 95,405 14.50% 

Separated Flock 147,330 22.39% 

Lynchpin Issues 192,339 29.24% 

Combined Total 249,534 37.93% 

Total Unsolvable 657,888 100.00% 

 

Table 2: Unsolvable state analysis 

 

 Table 2 provides a breakdown of unsolvable states from 
the provided dataset. For each class of states, both the total 
number of states identified by our solvability checker and 
what percentage of the overall number of unsolvable states 
this represents are listed. It is worth nothing that the com-
bined total of all these states represents a smaller total that 
the sum of the individual classes. This is because there are 
some states that are represented in multiple classes. Overall 
our solvability checker was able to correctly identify al-
most 40% of the unsolvable states with no false positives. 

Player 

To test our player, we played games against a variety of 
seeds. For each experimental run, the player runs 40 games 
against each of the 10,000 seeds. Each seed is first checked 
to determine if it is solvable. Any unsolvable seeds are 
then skipped. For the test dataset there were 24 unsolvable 
seeds, leaving 399,040 games played per run of the system. 

 

Iterations Player Win % 

100 44.26% 

200 77.20% 

300 94.55% 

400 96.78% 

500 98.09% 

1000 99.41% 

2000 99.75% 

4000 99.85% 

8000 99.88% 

 

Table 3: Player win rates 

 

Table 3 provides the overall win rates for the player 

against our dataset. The player was run several times with 

different limits on the number of iterations for Monte Carlo 

Tree Search simulation. It is notable that our player very 

quickly improves its win rate to almost 95% by 300 itera-

tions per turn. After that, it is a slow but steady increase 

towards 100%. As a limit test we ran our player for 8,000 

iterations per turn and only lost 480 games, resulting in a 

99.88% win rate. 

Conclusions and Future Work 

There are several conclusions that can be drawn from our 

work on Birds of a Feather Solitaire. First, using a heuristic 

search for analyzing the search tree of a given starting seed 

of the game provides significant improvement in terms of 

number of nodes expanded for solution search. In our ex-

periments we found that a heuristic using the state score 

and the number of possible legal moves as factors provided 

the best results. 

 Second, there are several characteristics of a game state 

that can be used to determine whether it is solvable or not. 

For our research we focused on unsolvable states and iden-

tified three classes of states that cannot be solved: states 

with stranded cards, states with separated flocks (a subset 

of cards that can only be moved onto each other), and 

lynchpin cards (critical cards that cannot be moved without 

stranding other cards) that are put into impossible situa-

tions to resolve legally. By developing these characteristics 

into a solvability checker that can evaluate states, it is easi-

er to develop an effective player for this game. 

 Finally, we present a strategy for developing an AI play-

er capable of winning most starting arrangements of Birds 

of a Feather. Combining simple lookahead, Monte Carlo 

Tree Search, and contextual search tree pruning using 

solvability data, our player is able to achieve win rates in 

the mid-90% range using only a few hundred iterations in 

Monte Carlo Tree Search simulation. 

 There are some areas open for future expansion of our 

work, especially in the area of determining solvability of a 

state. One area of interest is the examination of difficult 

starting configurations of Birds of a Feather. While our 

player was able to successfully solve almost every solvable 

state in the dataset, there were some states that our player 

was not particularly effective at. We would like to investi-

gate these cases further to understand why these pose such 

a challenge and look for improvements to be made to our 

player. In addition, our solvability work focused mostly on 

determining unsolvable cases. There is potential to deter-

mine characteristics that make a solution solvable, which 

would expand the number of states that could be correctly 

identified by our solvability checker. 
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