
The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-19)

A Neural Network Approach for
Birds of a Feather Solvability Prediction

Benjamin Sang, Sejong Yoon
The College of New Jersey

Ewing Township, New Jersey 08618

Abstract

Birds of a Feather is a single player, perfect information card
game. The game can have multiple board sizes with larger
boards introducing larger search spaces that grow exponen-
tially. In this paper, we investigate the solvability of the game,
aiming at building a machine learning method to automati-
cally classify whether a given board state has a solution path
or not. We propose a method based on image-based features
of the board state and deep neural network. Experimental re-
sults show that the proposed method can make reasonable
predictions of the solvability of a game at an arbitrary stage
of the game.

Introduction
Birds of a Feather (BoF) is a single-player, perfect infor-
mation card game that was introduced for a student-faculty
research challenge at EAAI 2019 (Neller 2018). The goal of
the game is to find a deterministic solution sequence given
an initial board state following a list of rules. The initial
state consist of cards dealt from a shuffled, basic 52 card
deck, which consists of four suits (Club, Diamond, Heart,
and Spade) and thirteen ranks per suit (A to K). A board
state is partitioned into square grids, which can vary in sizes
from 1 × 1 to 7 × 7. The player must move one card at a
time, on top of the other card, following the rules, until there
are no more movable cards left on the board. There are two
rules that must be followed in the game: a card can be placed
on top of the other (a) if cards share a suit, or (b) if the two
cards have an equal or adjacent ranks. The winning condi-
tion is satisfied when only one stack of cards remains on the
board.

The research challenge is open-ended and many topics of
research were suggested by the organizer. In this paper, we
chose to investigate the solvability prediction problem, that
aims to predict whether a game state has a solution path or
not. There are two reasons for this choice. First, it is fairly
straightforward to formulate this problem as a classification
problem which is intuitive to understand for a beginning stu-
dent researcher. Second, it was possible to collect large scale
data for the problem, both by obtaining from the organizers
and by generating our own dataset.
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Figure 1: Overview of the proposed classification framework

Particularly, we aim to answer the following three re-
search questions in this work: (a) Is it possible to train a
machine learning model to find a pattern that distinguishes
both trivial and non-trivial unsolvable initial board states
from solvable ones? (b) Is it possible to apply the model
trained by using initial board states to predict the solvability
of the interim (i.e. game-in-progress) board states? (c) What
are effective representations of the board state (or features
extracted from the states) that may improve the prediction
performance?

To this end, we designed a neural network-based classifi-
cation framework that accepts board states as inputs to the
framework, and solvability as the corresponding binary out-
put of the framework. The main contributions of this paper
are two-fold: (a) We propose a BoF solvability classifica-
tion framework that utilizes image-based features to repre-
sent the board state, (b) We show how the proposed frame-
work can utilize the suggested image-based features, either
individually or in combination, to effectively predict BoF
solvability. Additionally, we provide a dataset with 1 mil-
lion unique initial board states with solvability information
and (if solvable) solution sequences we used in our study.
Fig. 1 depicts the overview of the proposed framework.

The rest of the paper is organized as following: We first
describe our classification framework, introduce the dataset
we collected, followed by image-based features we propose.
Then, we present our experimental results with analysis. We
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conclude our paper with a list of future directions for follow-
up research topics.

Method
In this section, we introduce the neural network-based BoF
solvability classification framework we used. First, we for-
mulate the BoF solvability problem to tackle, and then ex-
plain the deep neural network architecture we used, followed
by image-based features we designed.

Problem Formulation
Our goal is to find a nonlinear mapping f : X → y
from an input board state X ∈ RM×M×C represented in
a feature tensor, to a 2-dimensional output column vector
y ∈ R2. Here, M denotes the size of the board’s grid
and C is the number of feature channels. To find f , we
employ a data-driven approach, and prepare a dataset of
known pairs of input board states and solvability informa-
tion, D = {(Xn,yn)|n = 1..N}, where n denotes the in-
dex of pairs, and N is the total number of pairs in the dataset.
Note that in our dataset, labels yn are either [1; 0] or [0; 1] in
MATLAB/Octave notation (a two dimensional column vec-
tor), denoting solvable and unsolvable board states, respec-
tively. Then, our objective is to find f that minimizes

L =
1

N

N∑
n=1

‖f(Xn)− yn‖2, (1)

also known as the Mean Squared Error (MSE) loss function.

Neural Network-based Classification Framework
If f is in the form of a function of parameters w, finding f is
essentially equivalent to finding w. Finding an analytic so-
lution to the problem above may be possible if the derivative
of f with respect to w is known. We can utilize the gradi-
ent descent algorithm to reach the optimal solution for w.
To enhance the expression power of f , one can design f as
a composite function of multiple simpler functions and then
apply the chain rule to derive the derivative of the overall
function.

Artificial neural networks (ANN), with the stochastic gra-
dient descent (Robbins and Monro 1951) and the back-
propagation algorithms, are one of the standard tools to solve
this type of problems. In ANN, each layer can be consid-
ered as a function to be combined, and the stack of lay-
ers essentially represent the overall nonlinear function we
want to find. With the advances in hardware technologies,
one can design and train very deep and wide ANN. It is
also a well-known fact that ANN are particularly useful in
learning unknown representations of data (Rumelhart, Hin-
ton, and Williams 1988). Since we are unsure which feature
representation of the board state is effective for the solv-
ability prediction problem, it would be reasonable to con-
sider adopting ANN for our research. Moreover, our pre-
liminary experiments using other machine learning methods,
e.g., Support Vector Machine (Cortes and Vapnik 1995) was
not as successful as we expected. Further investigation may
be needed to justify the shallow discriminating models for
the solvability prediction for the BoF data we collected.
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Figure 2: Proposed Step Encoding Network. Each FC layer
shows the numbers of input and output node.

Thus, we propose to employ deep ANN for our solvability
classification framework. For the network architecture, we
employ two types of layers, a convolutional neural network
(CNN) (LeCun et al. 1998) and 15 standard fully connected
(FC) layers. The whole network consist of two parts: rep-
resentation encoding and step encoding. The former learns
spatial structural patterns from the training board states, rep-
resented as image-based features we will describe below.
The latter learns the step-by-step game procedure from the
initial (or current) board states to the goal state, which hope-
fully will regress to the solvability label vector y. Fig. 2 de-
scribes the overall ANN architecture we used. We provide
empirical justification on the choices of the network struc-
ture hyper-parameters in the experiment results section.

Features
For our application, desirable features should describe well
the implicit characteristics of the game states, and preferably
have strong discriminating power for the solvability classifi-
cation task. Naturally, one must start with investigating the
rules of the game to design such features. Players (or com-
puter systems) must be able to recognize the current board
state as a square grid and understand the rules of the game
which are:
• Cards can only move left, right, up, and down.
• Cards can only move on top of another if:

– The cards share a suit.
– The cards share the same or are an adjacent rank.

From the set of restrictions, we defined three primary fea-
tures for our model.
• Rank: The rank of a card on the board (0, 1, 2, ... , 13)
• Suit: The suit of a card on the board (0, 1, 2, 3, 4)
• Movability: Whether a card is unmovable, movable

horizontally (left-right), vertically (up-down), or both (0,
1, 2, 3, 4, respectively)

We reserved 0 to indicate cases when the card does not ex-
ist in that grid cell. We considered one more feature, Odd
Bird (OB), which was identified by the Challenge orga-
nizer (Neller 2018). This is the case when a card cannot
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(a) Board Seed #228420 (b) Movability (c) Odd Bird

(d) Rank (e) Suit (f) Combined

Figure 3: Example image-based features. Colors indicate different normalized intensities of the feature value at each grid cell.
The combined figure (f) was generated by taking the average of all features.

move at all from its current position, regardless of other
cards’ movements at an arbitrary board state. The OB feature
is particularly useful in distinguishing solvable and unsolv-
able cases from the initial board state when there is no empty
position in the grid. For OB feature, we used 1 to indicate
the card in that cell is OB, and 0 otherwise. After extracting
the features using the encoding above, we normalized each
feature to fall in [0, 1] range.

We also transformed these features into images of square
grid cells, to preserve the spatial structure information.
Utilizing image processing methods to pre-process orig-
inally non-image-based information and generate image-
based features that encode structural information is a com-
mon technique in machine learning applications. One can
easily find examples in literature, e.g. (Zhang et al. 2015).
The generated image-based features are fed into CNN, so
that our ANN can automatically extract implicit structural
pattern to distinguish the unsolvable cases from solvable
ones. Fig. 3 shows an example of the features we used in
this work.

Experiments
In this section, we describe the datasets we collected and the
experimental setup we used in this study.

Datasets
We used two datasets in this work. One datset we used is
the one publicly distributed by the organizers, and we re-
fer to this dataset as BOAF. Each initial board state can be
uniquely determined by the corresponding seed value, which
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Figure 4: Histogram of unsolvable seed (initial board state)
distribution. Red line indicates the mean.

is an integer input to the randomization algorithm (linear
congruential generator) included in the code provided by the
Challenge organizers. This dataset contains only the seeds
between 0 and 10,000 and it has all interim board states
throughout each game and corresponding solvability infor-
mation. From this dataset, we used both the initial and in-
terim states as independent samples. The other dataset is the
one we collected in-house utilizing the provided code. We
refer to this dataset as InitSet since we collected only
initial board states as independent samples in the dataset.

To start with InitSet data collection, we began with
modifying the program “Experiment 1” that returns the solv-
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Table 1: Statistics on Datasets. OB denotes the Odd Birds
case when a card cannot move at all from its current posi-
tion, regardless of other cards’ movements at an arbitrary
board state. In this study, we only used the balanced set of
samples from InitSet. The collected dataset contains ex-
tra solvable cases for the future research. For BOAF dataset,
each interim board state counts as an independent sample.

Dataset Train Val. Test
InitSet (unsolvable-w/ OB) 734 442 295
InitSet (unsolvable-w/o OB) 197 118 77
InitSet (solvable) 931 560 372
InitSet (total) 1,862 1,120 744
InitSet (solvable-extra) 498,138 298,880 199,256
BOAF (unsolvable-w/ OB) 63,742 38,103 38,597
BOAF (unsolvable-w/o OB) 300,931 180,701 181,859
BOAF (solvable) 318,056 144,218 127,224
BOAF (total) 682,728 363,022 347,680
All (InitSet + BOAF) 684,590 364,142 348,200

ability of a range of seeds. After confirming that negative
seeds yield distinct and different board states from their pos-
itive, binary, and hexadecimal counterparts, we chose to take
the seeds in the range -500,000 and 499,000, resulting in a
data pool of 1 million seeds. After generating the data, we
reconfirmed that every initial board state is unique in the
pool. We also discovered that out of the 1 million seeds, only
about 1,800 seeds are unsolvable. As shown in Fig. 4, the
unsolvable seeds are almost uniformly distributed.

Experiment Setup
For the experiments, we first extracted the same set of fea-
tures from both datsets. Since the unsolvable cases are uni-
formly distributed, we randomly shuffled the samples and
split the samples into three sets: 50% for training, 30%
for validation, and 20% for testing. We always used vali-
dation set to find the best learning hyper-parameters (e.g.
batch size, number of total iterations, initial learning rates,
decaying factor). In InitSet, the initial seeds within the
separate training, validation, and testing sets are also cho-
sen within the pool of the solvable seeds and unsolvable
seeds separately, so that each set contained an equal amount
solvable and unsolvable seeds. This way we can address
the issue of having a severely imbalanced dataset in the
InitSet. Table 1 summarizes the statistics of the dataset
we used.

Implementation
We utilized PyTorch (Paszke et al. 2017) for the neural
network architecture implementation. We used each data
set’s training and validation sets to find the best batch size,
learning rate, and the number of epochs to train our net-
work on. We used the batch size of 100, a learning rate
of 0.001, and an epoch length of 50,000 for InitSet in
all our experiments. For the learning rate, we used a learn-
ing rate scheduler, which would increase the learning rate
by 0.1 every 13,000 epochs. When training and testing on
BOAF, we increased the batch size to 10,000 but all the other

Table 2: Comparison of Different Network Architecture.

Condition Dataset Val. Test
w/o CNN InitSet 67.3% 68.5%
w/ CNN InitSet 90.1% 90.6%
w/o CNN BOAF 76.1% 76.0%
w/ CNN BOAF 76.6% 76.7%
w/o CNN All 76.5% 76.7%
w/ CNN All 76.4% 76.6%
w/o shrink InitSet 88.9% 89.8%
w/ shrink InitSet 90.1% 90.6%
w/o shrink BOAF 76.8% 77.0%
w/ shrink BOAF 76.6% 76.7%
w/o shrink All 76.4% 76.6%
w/ shrink All 76.4% 76.6%

parameters remained the same. For optimization, we used
ADAM (Kingma and Ba 2014).

Results and Discussion
In this section, we first describe empirical properties of the
proposed classification framework. Then, we answer our
three research questions, i.e. (a) training a classification
model to distinguish both trivial and non-trivial unsolvable
initial board states from solvable ones, (b) generalization
ability of the learned model to predict the solvability of the
interim board states, and (c) effective feature representations
to improve the prediction performance.

Hyper-Parameter Choices
We empirically investigated four framework design ques-
tions here: (a) Is CNN necessary? (b) Should the FC layers
shrink (i.e. gradually reducing from 32 dimension to 2 di-
mensions)? and (c) How many FC layers are needed? To an-
swer (a) and (b), we tried to train our model with and without
the CNN and shrinking. In non-shrinking case, we set all in-
ternal FC layers to have same input and output size (32) ex-
cept the last node that regress to the output (2 dimensions).
The experimental results indicate that both CNN and shrink-
ing layers are necessary to improve the solvability classifi-
cation performance on InitSet, but not significantly in
BOAF and All, where we combined both InitSet and
BOAF. This is because our InitSet only consists of initial
board states with no missing cells, thus CNN can find spatial
dependency better. Table 2 summarizes this result.

Fig. 5 shows the validation and test accuracies on
InitSet and All cases with varying number of FC lay-
ers. We started our study with the choice of 15 layers trying
to encode the 15 game steps from the initial state to the goal
state. The result on InitSet shows that 1 layer actually
performed best and the other four layer choices have no sig-
nificant difference. However, this can be due to the small
dataset size of InitSet since in All, we see that 1 layer
actually performed significantly worse than the other four
configurations. Based on this analysis we concluded that
there is no significant difference among the layer choices
among 3, 5, 10, and 15. Thus we kept 15 layers to hopefully
encode the 15 game steps.
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(b) Val. Accuracy (All)
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(c) Test Accuracy (InitSet)
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(d) Test Accuracy (All)

Figure 5: Comparison with different number of FC layers. Note that InitSet is less than one percent of All in terms of
number of samples. Thus the result for BOAF is similar to that of All. Similar trends can be observed in Table 2 and Table 3.

Fig. 6 shows the loss function value trend over the training
iterations. It shows that our framework converges to reason-
ably small value as the maximum loss per sample is 1.

Direct Inference from Initial and Arbitrary State

Table 3 summarizes our experimental results using all
datasets. We conducted several independent trials with dif-
ferent random shuffling but the variances were negligible
in most cases. In both InitSet and BOAF, the proposed
framework was able to obtain good classification perfor-
mance with the proposed image-based features, well-above
both the random decision (50%), and also simple rule-based
decision based on existence of OB (89% for InitSet and
56% for BOAF).

Generalization of Trained Models

We also conducted experiments across datasets, i.e. using
one dataset as training set and test on the other. This way,
particularly trained using InitSet and test on BOAF, we
can see whether our ANN model trained using only initial
board states can generalize its prediction to arbitrary game
state. Table 4 summarizes this result. When trained with
BOAF and tested on InitSet, our method showed compa-
rable performance with the case when the model was trained
using InitSet. This is expected given large amount of
training data. When trained with InitSet and tested on
BOAF, the performance was not as good as the other case.
This is expected since InitSet does not have cases with
empty cells. However, the result is at least better than the
cases when using only Movability or Rank/Suit information
for features. It is also better than rule-based decisions based
on the existence of OB. Given that the percentage of unsolv-
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Figure 6: Mean Squared Error loss over the training itera-
tions, using all features, on InitSet dataset.

Table 3: Comparison of Features

Dataset Feature Val. Test
InitSet Movability 66.2% 61.0%
InitSet OB 89.7% 89.7%
InitSet Rank, Suit 50.4% 51.3%
InitSet Movability, Rank, Suit 68.0% 68.0%
InitSet Movability, OB 89.6% 91.0%
InitSet All 90.0% 90.3%
BOAF Movability 60.3% 63.4%
BOAF OB 73.1% 73.5%
BOAF Rank, Suit 60.3% 63.4%
BOAF Movability, Rank, Suit 74.8% 75.2%
BOAF Movability, OB 76.0% 76.3%
BOAF All 76.6% 76.7%
All Movability 72.2% 72.9%
All OB 60.2% 63.4%
All Rank, Suit 71.1% 71.4%
All Movability, Rank, Suit 74.7% 75.8%
All Movability, OB 75.7% 75.9%
All All 76.5% 76.7%

able seeds with odd birds in BOAF is roughly 17.5% out of
all unsolvable seeds, we can safely say that the framework
has learned a bit of non-obvious patterns without OB.

In Table 5, we provide our method’s performance on
all samples in InitSet, including the solvable cases. We
trained our model using the same training data (1,862 sam-
ples), but we added all remaining solvable-extra cases in Ta-
ble 1 to the test set. In this case, since we have many more
positive (solvable) cases than the negative (unsolvable) ones,
we report true positive rate and true negative rate as well as
accuracy. As it can be seen in the result, OB has the most
important role in this data. It is not surprising that, using
the OB only, one can obtain 1.00 TPR and 0.79 TNR from
the dataset by predicting all samples without OB as solv-
able. More important thing to note is that, using the pro-
posed combination of features, one can improve TNR with-
out yielding too much TPR. It should be reminded that we
have shown the utility of the proposed method in non-initial
board states as shown in Table 3.

Table 4: Comparison of datasets as trainset using the pro-
posed method.

Trainset Val/Testset Val. Test
InitSet BOAF 64.4% 68.1%
BOAF InitSet 89.9% 89.9%

Table 5: Results on all samples in InitSet. We trained
our model using only 1,862 train samples and tested on all
remaining samples. True Positive Rate and True Negative
Rate are reported to demonstrate the performance in the im-
balanced dataset.

Method Accuracy TPR TNR
Movability 82.5% 0.83 0.37
OB 99.9% 1.00 0.79
Rank, Suit 58.7% 0.59 0.41
Movability, Rank, Suit 80.2% 0.80 0.24
Movability, OB 97.6% 0.98 0.80
All 89.1% 0.89 0.85

Feature Selection
Table 3 also summarizes performances of different combi-
nations of the proposed features. As it can be seen, employ-
ing all features showed the best performance in almost all
cases we considered. Only in InitSet test set, it was sec-
ond best. Moreover, our framework consistently improved
performance over OB-only cases, showing that the proposed
features can learn non-obvious patterns in unsolvable states.

Conclusion and Future Work
In this work, an artificial neural network-based framework
was proposed for the solvability classification problem of
Birds of a Feather card game. With the proposed image-
based features, the proposed system can effectively learn
patterns of non-obvious unsolvable board states both from
initial and in-progress game states. The framework also
showed that it is possible to generalize patterns learned from
one type of dataset (either only initial states or only in-
progress states) can be used for the other type of dataset.

We hope the outcome of this work opens several future
research directions to the community. An interesting topic
would be to find a way to possibly utilize the large num-
ber of solvable initial board states in InitSet, learn the
general patterns of solvable cases, and use them to further
improve the solvability classification performance. Another
direction would be to investigate our approach’s applicabil-
ity to different board sizes other than 4× 4.
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