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Abstract

Our work builds on advances in deep learning for natu-
ral language processing to automatically analyze transcribed
classroom discourse and reliably generate information about
teachers’ uses of specific discursive strategies called ”talk
moves.” Talk moves can be used by both teachers and learn-
ers to construct conversations in which students share their
thinking, actively consider the ideas of others, and engage in
sustained reasoning. Currently, providing teachers with de-
tailed feedback about the talk moves in their lessons requires
highly trained observers to hand code transcripts of classroom
recordings and analyze talk moves and/or one-on-one expert
coaching, a time-consuming and expensive process that is un-
likely to scale. We created a bidirectional long short-term
memory (bi-LSTM) network that can automate the annota-
tion process. We have demonstrated the feasibility of this
deep learning approach to reliably identify a set of teacher
talk moves at the sentence level with an F1 measure of 65%.

Introduction
Classroom recordings can be understood as a new form
of big data: they are now common practice and rapidly
becoming a highly utilized resource for teacher learning.
These recordings consist of video, audio, and/or transcripts
of teaching episodes, including entire lessons or portions
of lessons. They may capture whole class discussions,
teacher facilitated-group work, or online instruction. For
instance, a recent search for ”video in teacher education”
yielded 1,630,000 results in Google Scholar. Furthermore,
an increasing number of websites host large collections of
videos of teaching episodes, either collected by research
teams or uploaded by teachers themselves; see for exam-
ple The Teaching Channel, Teacher Tube, The Teaching
and Learning Exploratory, and Inside Mathematics. Teacher-
Tube, based on YouTube, contains over 400,000 classroom
videos, the majority of which were uploaded by teachers.
These sites reflect calls for curated digital video libraries as
a means of systematically sharing classroom practice and
generating a knowledge base that can support instructional
improvement (Hiebert, Gallimore, and Stigler 2002). There
is likely to be exponential growth in classroom recordings in
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the coming decade as more teachers ”self-record” using ad-
vances in classroom robotics (e.g., SWIVL, Panopto) and
other audio/video recording technologies (e.g., improved
smart-phone capabilities). Our goal is to utilize this data to
provide valuable feedback to teachers on their effective use
of discourse practices. Our efforts to develop a deep learning
framework for classifying discourse serves as an example
of the type of innovative application that can be built using
large scale repositories of classroom teaching.

We take our motivation from Vygotsky’s theory (Vygot-
sky 1978) that deliberative social interaction is essential
to the development of individuals’ mental processes. This
theory still resonates within the education community, and
has heavily influenced the literature on effective classroom
talk (Michaels, O’Connor, and Resnick 2008). Of particular
relevance is Vygotsky’s argument that instructional moves
should be used to support students to shift from being able to
learn while assisted to becoming independent, and that these
moves should occur at opportune moments within a given
student’s zone of proximal development. In the mathematics
education field, there is widespread agreement that students’
understanding should be constructed through the process of
interacting within a learning community, with discussions
serving as a prominent and normative feature within K-12
classrooms (Evans, Leija, and Falkner 2001). The Common
Core State Standards for Mathematical Practice emphasize
communication as a means of promoting argumentation and
reasoning, and engaging students in the intellectual work of
mathematics by vocalizing their thinking and making sense
of others’ ideas (Franke et al. 2015).

In this paper, we describe the development of a talk
moves classification model, based on transcribed audio from
teacher and student classroom interactions. This classifica-
tion model will eventually be incorporated into a larger ap-
plication (TalkBack) that draws on recorded audio tracks
to detect specified discourse moves, and generates person-
alized feedback through a web-based interface. The Talk-
Back application and its potential to support instructional
improvement is possible due to convergent advances in three
areas: the increasingly widespread availability of a new big
data source, advances in deep learning for speech and lan-
guage processing tasks that can be achieved with high levels
of reliability, and consensus in mathematics education re-
search on the types of mathematics discussion and teacher
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supports that promote student learning. In the next section,
we discuss related work using deep learning networks to
classify classroom speech, followed by educational theory
and rationale on talk moves. The Method section describes
the data sources and model architecture method, followed by
our results, discussion, and conclusion in consecutive sec-
tions.

Related work
Our model architecture, as well as its representations, are
based on prior research in natural language processing and
deep learning. Deep learning models have been extensively
used in a variety of natural language processing tasks such as
binary and multiclass classification, entailment and seman-
tic relatedness, event extraction, semantic textual similar-
ity, paraphrase detection, machine translation, sequence tag-
ging, and caption image-retrieval tasks, among others (Con-
neau et al. 2017). In the domain of classroom discourse,
several research teams have developed and validated auto-
mated systems for discriminating basic discourse structures
(e.g. lecture, group work) (Donnelly et al. 2016). For exam-
ple, (Donnelly et al. 2016) trained supervised machine learn-
ing models to classify instructional segments with F1 scores
ranging from 0.64 to 0.78 based on data from 76 middle
school classes. Additionally, (Donnelly et al. 2017) demon-
strated the feasibility of using automatic speech recognition
and classification models to automatically segment class-
room speech and determine whether or not teachers’ ut-
terances contained a question. This work was based on a
dataset of 10,080 utterances, and the best performing models
achieved an F1 score of 0.69. Other efforts to use automatic
speech recognition include segmenting teacher and student
classroom speech (D’Mello et al. 2015) and low-level acous-
tic features (Donnelly et al. 2016). We believe the research
presented in this article is the first to use a deep learning
model on classroom discourse data to perform a multi-class
classification of teachers’ sentences.

The boost in performance of deep learning models when
compared with traditional models such as Naive Bayes, lin-
ear regression and k-nearest neighbours can partially be
attributed to recent advances in learning representations
such as sentence embedding and continuous word embed-
ding which have made it possible for deep learning mod-
els to discriminate between sentences in higher dimensional
space while being robust to noise. Recurrent neural networks
(RNNs) are more popular than traditional feedforward net-
works due to their capability to store past inputs in order to
produce the current output (Mikolov and Zweig 2012). How-
ever, owing to the vanishing gradient problem (Hochreiter
1998), researchers developed the Long Short-Term mem-
ory network or LSTM. LSTM replaces the RNN layer units
with LSTM units where the activation function is the iden-
tity function. Hence, the backpropagated gradient neither
explodes or vanishes. This advantage has prompted many
researchers to adopt LSTM networks over RNN’s. Similar
to RNNs, LSTMs have a bidirectional variant where the in-
puts are provided in both directions (forward and backward).
This variant enables the network to preserve information
from the past and the future. In some applications where

context is important, such as speech and language, bidirec-
tional LSTMs consistently outperformed LSTMs by feeding
the inputs in both directions (Conneau et al. 2017). Within
our research, which relies heavily on the context of conver-
sations, we incorporated a bidirectional LSTM layer in our
deep learning model.

Feature representations are crucial to determining and im-
proving model performance. In our work, we used features
common to state-of-the-art language applications, specifi-
cally sentence embeddings and word embeddings. For sen-
tence embeddings, we used the ALLNLI corpus (Conneau et
al. 2017), which is modelled after the Stanford Natural lan-
guage inference (SNLI) corpus (Bowman et al. 2015) and
MultiNLI corpus (Williams, Nangia, and Bowman 2017), to
produce these features for our models. The SNLI corpus is a
collection of human written sentence pairs which have been
manually labelled to support the task of natural language in-
ference. The labels include neutral entailment and contradic-
tion. Previously, SNLI was used for training sentence em-
bedding models. However, the MultiNLI corpus (Williams,
Nangia, and Bowman 2017), which is a multi-genre version
of SNLI with 433K sentence pairs, is observed to produce
a significant boost in performance when compared to SNLI
(Conneau et al. 2017). We retrained the model with 600 di-
mensions and used the trained model for our sentence em-
bedding representation. In addition to sentence embedding,
we have also used the GloVe Bag of words (GloVe BOW)
representation as a feature. GloVe or Global vectors for word
representation is an unsupervised learning algorithm trained
on aggregated word-word co-occurrence statistics from a
corpus. In our model, we use the vectors trained on Com-
mon Crawl with 840 billion tokens and 300 dimensions. For
a given sentence, we identify the GloVe representation for
each word in the sentence and compute a mean vector.

Educational Theory and Rationale
Research has demonstrated that implementing accountable
talk moves in the classroom has positive links to student
learning (Michaels et al. 2010). Yet, many teachers are ill-
prepared to routinely create and sustain mathematically-rich
and productive discourse in their classrooms (Weiss et al.
2003). These instructional skills are not easily developed
and require extensive practice, coupled with timely feed-
back to support reflection and inform adjustments in instruc-
tion (Jacobs et al. 2014).However, missing from the current
range of teacher learning tools are those that enable detailed
and rapid feedback.

Michaels, O’Connor, Resnick and other colleagues have
developed an approach to classroom discourse labeled ”ac-
countable” or ”academically productive” talk (O’Connor,
Michaels, and Chapin 2015). At the heart of accountable
talk is the notion that teachers should organize classroom
discussions that promote students’ equitable participation
in a rigorous learning environment. By utilizing specific
talk moves, teachers can help ensure that the discussions
will be purposeful, coherent, and productive (Michaels et al.
2010). Boston (Boston 2012) explains that accountable talk
moves support classroom discourse to go beyond the tra-
ditional ”Initiate, Response, Evaluate (IRE)” linguistic se-
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quence (Mehan 1979). In particular, accountable talk seeks
to replace the act of evaluating with practices that support
a collaborative understanding that builds on and extends
mathematical ideas (Michaels and O’Connor 2015). In this
way, talk moves enable dialogue shifts from teacher-directed
recitation to ”true discussions” in which knowledge is infor-
mally shared and constructed rather than transmitted (Caz-
den and others 2003).

Accountable talk moves have been defined and incorpo-
rated into a variety of tools for both researchers and prac-
titioners, including the Instructional Quality Assessment
toolkit (Boston and Wolf 2006) and the Accountable Talk
Sourcebook (Michaels et al. 2010). In our study exploring
the feasibility of a deep learning approach to reliably gener-
ate information about instructional talk moves, we incorpo-
rated 6 teacher talk moves from 3 categories:

1. Accountability to the learning community
• Keeping everyone together (e.g. ”What did she just

say?”)
• Getting students to relate to another’s ideas (e.g. ”Who

agrees and who disagrees?”)
2. Ensuring purposeful coherent and productive group dis-

cussion
• Restating (e.g. ”Let me say back what I heard.”)
• Revoicing (e.g. ”Let me say back what I heard and add

on.”)
3. Accountability to rigorous thinking

• Pressing for accuracy (e.g. ”Can you tell us the steps
you used to find the answer?”)

• Pressing for reasoning (e.g. ”How are these ideas con-
nected?”)

Accountable talk looks ”striking similar to the norms of
discourse called for in theories of deliberative democracy”
(Michaels, O’Connor, and Resnick 2008) (pg. 285). Specif-
ically, accountable talk supports a discussion-based class-
room community with the expectation that all students will
have equal access to participation, subject matter content,
and developing appropriate habits of mind (Michaels and
O’Connor 2015). In a discursive classroom, an environment
is constructed such that all students have the potential to con-
tribute to the rational discourse, and that potential is nurtured
and socialized (Michaels et al. 2010).

Forming and sustaining such a learning community has
the potential to especially support girls and students from
home backgrounds where risk-taking and modeling of sim-
ilar talk patterns may be less common, inculturating them
into the norms of democratic discourse that can later be
realized in wider civic spheres (Michaels, O’Connor, and
Resnick 2008). Shifting away from traditional IRE lin-
guistic patterns towards accountable talk makes space for
students’ contributions, especially for English Language
Learners (ELLs), by encouraging a focus on communicat-
ing mathematically and presenting arguments rather than
acquiring vocabulary and other low-level linguistic skills
(Moschkovich 2002). Furthermore, increased participation
by ELLs and students from non-dominant groups can foster

dispositions that attend to competencies and resources rather
than deficits and obstacles (Moschkovich 2002).

A central premise of our research is that personalized, au-
tomated feedback can dramatically enhance teacher learn-
ing and support improvements in their instruction. Prelimi-
nary evidence indicates that teachers who receive automated
feedback regarding the proportion of teacher to student talk
in their mathematics lessons significantly increased the rel-
ative amount of student talk (Wang, Miller, and Cortina,
2013), suggesting that even basic information about teach-
ers’ own classroom discourse patterns can produce changes
in the desired directions. Providing educators with longitu-
dinal information about their instructional practices for two
years improved students’ math achievement after the first
year by about four weeks of learning (Wayne et al. 2018).

Method
Data
The data used for training the talk moves classification
model were sourced from multiple, existing professional
learning resources for math teachers, which include entire
lessons and short excerpts from lessons. At present, the data
includes 100,683 sentences from 406 lesson transcripts, of
which 60,241 are teacher sentences and 40,442 are student
sentences. The data (i.e. text transcripts) were coded by two
human annotators, applying a set of six, mutually exclu-
sive teacher talk moves, adapted from the Accountable Talk
framework (Michaels, O’Connor, and Resnick 2008). The
inter-rater agreement/reliability score for each talk move is
summarized in table 1. The high levels of inter-rater reliabil-
ity suggest that machine learning models should be capable
of learning to discriminate between these different labels.

Of the teacher sentences, 54.49% contain one of the six
talk moves. The number of teacher sentences annotated in-
cluding a talk move is shown in figure 1. As the figure in-
dicates, the data have an uneven distribution pattern, with
more instances of ”Keeping everyone together” and ”Press-
ing for accuracy” when compared with the other talk moves.
The skewed nature of the data suggests there could be signif-
icant challenges in developing an accurate automated clas-
sification model. Imbalanced learning is still an open chal-
lenge in the field of machine learning and deep learning
(Krawczyk 2016).

Model architecture
This section describes in detail the deep learning model
trained on manually annotated transcripts of classroom
lessons. The aim of the model is to automate the annotation
and, when incorporated in the TalkBack application, to de-
velop actionable recommendations for changes in teaching
practice. The model classifies each teacher sentence, while
the student sentences are used as context. If the teacher sen-
tence does not contain a talk move it is classified under the
”None” label.

The text transcripts consist of student-teacher conver-
sations which are segmented into sentences. As the pre-
processing step, we converted the sentences into ”turns”.
Each turn is comprised of a student utterance followed by
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Figure 1: Histogram of teacher sentences containing talk
moves.

Table 1: Inter-rater agreement for coding talk moves
Coding Decision Inter-rater

agreement

Sentence containing a talk
move (or not)

95%

Talk move label 90%
Keeping everyone together 90%
Getting students to relate 86%
Restating 88%
Revoicing 87%
Press for accuracy 89%
Press for reasoning 91%

a teacher utterance. This organization is important in pro-
viding the model with the context required to learn talk
moves such as ”Restating” and ”Revoicing”, which have to
do with the teacher’s uptake of a student utterance. More-
over, a given teacher or student turn can include multiple
sentences. For example, Table 2 provides an example of a
turn with 4 sentences. The sentences are stripped of punctua-
tion and case information (uppercase or lower case). We did
not remove stop words because we anticipated that certain
stop words (such as ”what”) would be crucial in discrimi-
nating between the different talk moves.

The model takes a set of feature vectors as inputs and
produces a softmax output. The next step involves convert-
ing the ”turns” into corresponding feature vectors. Features
can be defined as distinctive attributes of a sentence that the
model can use to discriminate one type of sentence from an-
other. Some of the successful features used in the domain
of natural language processing are word embeddings and
sentence embeddings (Palangi et al. 2016). Embedding is
the process of representing the word/sentence as a vector
in higher dimensional space. Without the trappings of di-
mensionality, the distance between two vectors in higher di-
mensional space can be representative of the semantic dif-
ference (for example) between those words/sentences. So
similar vectors can be grouped together and have similar

Table 2: Example Turn of 4 sentences with punctuation re-
moved

student: so you put the eight on the box
student: then you get eight
teacher: oh so were you using this side to help you get

that side
teacher: let me see if i can figure out what you said

properties. These embeddings have been incorporated in var-
ious tasks such as semantic relatedness task and have been
documented to achieve up to 89% accuracy (Conneau et al.
2017). In a nutshell, this step enables the conversion of all
sentences into numbers for the model to process.

At present, the talk moves classifier includes four different
features:
• Sentence embedding - We used state-of-the-art sentenced

embedding from (Conneau et al. 2017) trained on the
ALLNLI corpus. Each sentence is represented as a 600
dimensional vector.

• GloVe BOW embedding - GloVe Bag of word representa-
tion. We took the average of the Glove vector normalized
over all the words in a given sentence. Each sentence is
represented as a 300 dimensional BOW embedding. The
GloVe embeddings are not updated during training.

• CountVectorizer - In addition to the above features we im-
plemented a CountVectorizer to keep track of the number
of words in each sentence. It is represented as a 100 di-
mensional vector which includes the top 100 words in the
corpus ordered by term frequency. The CountVectorizer
includes stop words.

• Role - This is a simple feature that indicates whether the
sentence is a student sentence or a teacher sentence. Al-
though we focus on identifying the talk moves for teach-
ers we provide the model with sentences spoken by stu-
dents as context to help it discriminate between students
and teachers.
The deep BI-LSTM model consists of five layers followed

by a softmax layer (see figure 2). The first layer merges all
of the features into a single vector. Handing the responsi-
bility of merging features at the Graphical Processing unit
(GPU) level is significantly better in terms of resources and
computation time when compared to Central processing unit
(CPU). The second layer is a Bidirectional Long Short-Term
memory layer, which is made up of LSTM units. A LSTM
unit is composed of a cell, input gate, output gate and forget
gate. The gates can be compared with conventional artificial
neurons and the cell handles all the ”remembering”. This
layer is followed by a time distributed dense layer which is
a one to one mapping of the input to output layer. This layer
allows for the application of the activation function across
every output over time. The time-distributed layer is fol-
lowed by two dense layers of width ”3015” and ReLU or
Rectified linear unit. ReLU is the max function (x,0) with
input x. The two major advantages of this unit is sparsity
and reduced likelihood of vanishing gradient. All the lay-
ers are batch normalized. The final step is a 7-way softmax
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unit which produces a probability distribution over the talk
moves. The output of this layer can be also interpreted as the
likelihood of each sentence to be classified as either ”None”
or a particular talk move. The output of softmax will enable
us to identify the talk move associated with every teacher
sentence in the dataset. The model architecture was devel-
oped based on previous research on deep learning models
to investigate the SNLI corpus (Conneau et al. 2017). The
proposed deep learning architecture is a baseline model to
classify teachers’ sentences from classroom discourse data.

Figure 2: Layer architecture. D represents the width of the
layer

Implementation
The model was implemented using the Keras library in
Python 2.7. There are different types of parameters involved
in the model, and the parameter selection procedure will be
discussed in the next section. The maximum number of sen-
tences in a turn was capped at 30 sentences per turn. We
used batch training with 128 turns per batch. Each epoch in-
volved multiple batches based on the available data. We ran
the model for 30 epochs on the training data before running
it on the test data. We used ”RMSProp” optimizer with ”Cat-
egorical cross-entropy” as the loss function. The dropout
rate was 0.5, the recurrent dropout was 0.5, and learning rate
was 0.0001. The width of the intermediate dense layers was
3015. Changing the width of the layer in the range of 1015-
4015 did not affect the performance of the model.

Results
After all the pre-processing steps (e.g., converting the tran-
scripts into turns), the dataset was divided into training, val-
idation and testing sets with an 80/10/10 split. i.e. 80% of
the data was used for training and rest for validation and test
data respectively. The validation set was used for parameter

selection i.e. hypertuning.The turns/sentences in the test set
were not involved in training to avoid the over-fitting prob-
lem. The model performance on the test is a true indicator
of what the model has learned.

Metrics
We used an F1 measure as the performance metric. F1 is the
harmonic mean of precision and recall and calculated as:

F1 = 2 ∗ precision∗recall
precision+recall

where precision is the fraction of retrieved talk moves that
are relevant to the sentence and recall is the fraction of the
talk moves that are successfully retrieved. The F1 score was
calculated only across the sentences with talk move labels
(micro averaged). Teacher sentences with ”None” labels and
student sentences were not considered when calculating the
F1 score. On the test set, the model produced an overall F1
score of 65%. The performance graph is shown in figure 3.
After a few epochs of training, the performance of the model
on the training data (represented by dotted line) reached an
F1 measure close to 1.0 while the performance on validation
set (represented by solid line) was similar to the performance
on the test set.

Figure 3: Model performance on test set

Parameters selection
Because GPU-based training benefits from fixed size
batches, we needed to decide on a single turn length to use.
After examining the statistics of the number of sentences in
a turn, we found that although most turns had just two sen-
tences, there were also sentences which were a part of long
paragraphs. Based on the analysis, we capped the number of
sentences in a turn to be 30. If a turn had fewer sentences
than 30 it was pre-padded with zeros and likewise, if it was
more than 30, it was truncated. In order to tune the hyper-
parameters of the model such as loss function, learning rate,
dropout rate and recurrent dropout, we performed tests on
exhaustive combinations of these parameters. For example,
figure 4 represents an example run where the dropout rate
was 90% while other parameters were fixed. In addition to
training and test, we also plotted the performance of the
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model on the test set for every epoch to ensure that the valid
curve and test curve follow similar performance levels. With
90% dropout, the model had a hard time learning the data.

Figure 4: Model performance on test set - Parameter selec-
tion

Further justification for the use of BiLSTM is provided
in Figure 5, which compares the performance (F1 score) of
the model across different types of recurrent layers, includ-
ing LSTM (Long Short Term Memory Unit), GRU (gated
recurrent unit), and RNN (recurrent neural network). Recur-
rent neural networks are typically used in scenarios which
involve sequence processing. In our work, sequential con-
text information provides valuable insights that support the
prediction of talk moves associated with the teachers’ sen-
tences. To validate BiLSTM as our choice of a recurrent
layer, we compared this layer with three other popular re-
current layers. For each type of recurrent layer, the model
was retrained and cross-validated. As expected, the BiLSTM
model outperformed the others, suggesting it is the optimal
recurrent layer of choice for talk move classification.

Figure 5: Choice of recurrent layer type

Error Analysis
In addition to the overall F1 score, we calculated the F1
score for individual talk moves. Table 3 shows a confusion

matrix that describes the performance of the model on a test
set with 4,352 teacher sentences. Numbers 1 though 6 corre-
spond to the various talk moves while number 0 corresponds
teacher sentences without a talk move. The columns indicate
the number of teacher sentences with predicted talk moves
while the rows indicate the actual talk moves. The addi-
tional columns show the Precision, Recall and F1-measures
of the individual talk moves. As the confusion matrix indi-
cates, Press for Accuracy (number 5) performs well, with
585 sentences correctly identified as this talk move. Mean-
while, Revoicing (number 4) was incorrectly identified as a
sentence not containing a talk move for 55 sentences, com-
pared to 43 instances where it was classified correctly.

Next we performed an error analysis to look more closely
at the incorrectly classified sentences for each individual
talk move. Some of the sentences incorrectly classified as
”None” instead of ”Keeping Everyone together” were sin-
gle word sentences such as ”okay” and ”yes”. In addition,
we noticed that the model was not performing well for the
”Restating” talk move. Most instances of ”Restating” occur
when the teacher is essentially repeating a prior student ut-
terance. In order to address the above issues, we included
the CountVectorizer as one of the input features. We realized
that both the word embeddings and sentence embeddings we
used did not directly carry information about the number of
words in a sentence. Adding the CountVectorizer resulted in
a significant boost in performance (3% in overall F1 mea-
sure) of the model. Also, we observed that the talk moves
”Keeping everyone together” and ”Press for accuracy” have
a good deal of overlap in some of their language structures,
as shown in Table 3. This observation suggests the annota-
tion protocol may need to be revised in order for these talk
moves to be more clearly distinguished by the model.

Discussion
The classification performance across each of the talk moves
exceeds the majority class baseline (19%) by 19-55%. The
majority class baseline is the percentage of time a predic-
tion would be correct if we always chose the most frequently
occurring class, which in our case is Keeping Everyone To-
gether. The Press for Accuracy and Press for Reasoning la-
bels are already performing at the level of well-trained hu-
man coders (F1s > 0.70). The performance on the Revoic-
ing label is surprisingly poor (F = 0.38), as word and sen-
tence embedding features should be very effective at this
type of paraphrase detection task. Overall, however, the level
of model performance is very encouraging, particularly con-
sidering that the amount of training data (100k sentences)
used in this study is relatively modest by deep learning stan-
dards and, to date, we included only a few basic features to
represent our data.

At present, there is a dearth of research literature using
deep learning models on classroom data. However, we be-
lieve it is fair to compare the performance of our model with
other language models that make use of classroom discourse
data such as (Donnelly et al. 2017) and (D’Mello et al.
2015). Performance achieved by our model F1 measure of
65% is very similar to the performance of the language mod-
els in (Donnelly et al. 2017) and (D’Mello et al. 2015).Taken
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Table 3: Confusion matrix showing predicted and actual numbers of sentences with each talk move.
Predicted
0 1 2 3 4 5 6 Total Precision Recall F1

Actual 0-None 2085 112 2 13 19 85 4 2320
1-Keeping Everyone Together 255 446 16 17 17 64 4 819 0.69 0.55 0.61
2-Getting students to relate 21 17 58 0 0 18 2 116 0.66 0.50 0.57
3-Restating 17 3 0 38 11 0 0 69 0.46 0.55 0.50
4-Revoicing 55 19 0 11 43 5 0 133 0.45 0.32 0.38
5-Pressing for accuracy 145 49 11 4 6 585 4 804 0.75 0.73 0.74
6-Press for reasoning 12 0 1 0 0 21 57 91 0.80 0.63 0.71

Total 2590 646 88 83 96 778 71

together, these studies illustrate the potential along with the
challenges of inferring patterns based on classroom data.

In our future work we plan to utilize an expanded set of
input data for the model based on human annotations of 1)
additional categories of teacher talk moves and 2) student
talk moves. We conducted a series of experiments to assess
the impact of additional data on model performance, where
we trained the model with different proportions of the data
to gauge how performance changed with each addition. The
results for which is summarized in figure 6. Each bar repre-
sents the number of sentences and turns used in a training set
while the height of the bar represents the F1 measure calcu-
lated on the test set. The test set was the same throughout dif-
ferent trials in order to make a fair comparison on the impact
of the number of sentences used for training. The lighter bars
indicate the available data and the darker bars indicate the
projected data. We can observe a linear increase in perfor-
mance corresponding to an increase in training data, which
suggests that the model performance is clearly expected to
improve with additional data. More data is required in order
to estimate the performance saturation point of the proposed
model.

Figure 6: Projected model performance for different propor-
tions of training samples

Conclusion and Future work
Orchestrating instructional conversations is an ”important
and universally recognized dimension of teaching”, and

prior research has established strong linkages between pro-
ductive classroom discourse and student achievement (Cor-
renti et al. 2015). Currently, providing teachers with de-
tailed feedback about their discursive strategies requires
highly trained observers to hand code transcripts and ana-
lyze moves (e.g., (Correnti 2005) and/or one-on-one expert
coaching, a time-consuming and expensive process (Robert-
son, Ford-Connors, and Paratore 2014). Our goal is to de-
velop an application, TalkBack, that will automate this pro-
cess, and bring feedback on these instructional practices to
scale, making them immediately accessible to teachers.

In our study, we trained bi-directional long short-term
memory networks incorporating only simple features, such
as bag-of-words and sentence embedding, to recognize six
types of talk moves used by teachers with an average F1 of
65%, representing up to 74% gain over the class baseline.
To train and validate the models, we created a large corpus
of annotated transcripts of teacher-student interactions in a
wide variety of mathematics learning environments, from
small group instruction to K12 classrooms. We achieved an
average 90% inter-rater reliability between human experts
annotating these data, suggesting that there is an opportu-
nity for significant improvement in model performance.

A central premise of our research is that personalized,
automated feedback can dramatically enhance teacher
professional learning and support improvements in their
instruction. we plan to incorporate the talk moves classifier
combining talk move processing, storage, and analytics
within a web application. We envision end users (i.e.,
teachers) uploading or streaming classroom videos through
the web application, which will then extract student and
teacher sentences from the video and converting them into
feature vectors which are readily consumable by the deep
learning model. Information from the TalkBack application
described above can help teachers understand how their use
of talk moves and other patterns of discussion in their class-
rooms are changing over time. Additionally, the application
will allow teachers to view selected video clips, enabling
reflection on their own or others’ practice. This type of
experience may support teachers to refine their instruction,
providing a more inclusive classroom community in which
students engage in productive classroom discussions around
challenging content.
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