
The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-19)

A Preliminary Report of Integrating Science
and Computing Teaching Using Logic Programming

Yuanlin Zhang,1 Jianlan Wang,1 Fox Bolduc,1 William G. Murray,1 Wendy Staffen2

1Texas Tech University, 2Laura Bush Middle School, USA
{y.zhang, jianlan.wang, Fox.Bolduc, William.G.Murray}@ttu.edu, wstaffen@lcisd.net

Abstract

This paper presents a framework to integrate Science and
Computing teaching using Logic Programming. We devel-
oped two modules: one for chemistry and the other for chem-
istry and physics. They are implemented in an elective course
for 8th graders. Through clinical interviews, video taped class
observations, exit interviews and our own experiences with
the class, Logic Programming based approach is accessible
to the students.

Introduction

There is an urgent need for a well-prepared workforce in
STEM and Computing in this century. Computing is not
only a STEM discipline in its own right but also a disci-
pline integral to the practice of all other STEM disciplines.
(STEM education act, 2015). There is consensus on the need
of integrating computing in STEM teaching and learning.
However, we know very little about how best we can teach
Computing and how to integrate it with STEM disciplines to
improve STEM and Computing learning.

The mainstream programming systems used in K-12 are
based on tinkering oriented visual languages such as Scratch
(Resnick and Rosenbaum 2013). This approach has demon-
strated some benefits of integration. However, more research
is needed to understand how thinking occurs as students
are tinkering (Guzdial 2004). Second, text-based languages
have the advantage over visual languages of “taking students
deeper into both programming and science” (Sengupta et al.
2015; DiSalvo 2014). But very little is known about integra-
tion using text-based languages.

In this paper we propose to use Answer Set Programming
(ASP), a modern version of Logic Programming (LP), to in-
tegrate computing into science teaching in middle school.
In the rest of the paper, we will first give a description of
our integration methodology and argue why it will facilitate
learning of science and computer science. We will then share
our experience on developing and implementing modules on
chemistry and physics for 8th graders.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Integration of Computing and Science
Teaching

To integrate Science and Computing teaching, we employ
a methodology with two (often iterative) sequential compo-
nents:

1. Problem Description. Teach students a new science
topic (problem) or review a learned topic (problem). Stu-
dents are expected to answer basic questions in this topic
and understand why their answers are correct.

2. Modeling. Ask students to build a computer model using
LP. Note that we use LP and ASP interchangeably in this
paper. The model is expected to answer the questions in
the problem descriptions.

We will use food chain as an example to illustrate both the
methodology and LP.

Problem description. Food chain is a science topic in mid-
dle school. Consider a chain with carrots, rabbits, snakes
and eagles. Typical questions include “Q1: do eagles eat
snakes?” and “Q2: what would happen to eagles if snakes
become extinct?” Students are expected to review or learn
food chains and how these questions can be answered.

Modeling. To design a computer model to answer the ques-
tions above, we follow an LP modeling methodology which
consists of two steps.

1. Identify objects and relations in the problem.

2. Identify knowledge in the problem and write LP rules for
this knowledge. The final LP rules, also called a program,
form the model of the problem.

Objects. The objects here are four species of organisms,
which can be represented in LP by the following sort decla-
ration:
#species = {eagle, snake, rabbit,

carrot}.
Note that each species is taken as an object here.

#species is called a sort name.
Relations. According to question Q1, we identify a rela-

tion of the form feedsOn(X,Y ) which means that mem-
bers of species X feed on those of species Y . In question
Q2, we introduce a relation extinct(X) which means that
species X is extinct.

9737



Knowledge and LP Rules. In this part, we explicate the
science knowledge needed to answer the questions in En-
glish and then “translate” that knowledge into LP rules. The
declarative nature of LP allows for a natural translation. For
example, in the given food chain, we know that “rabbits feed
on carrots”, which can be translated, using the relation intro-
duced earlier, into

r1 : feedsOn(rabbit, carrot).
which is called a fact, a simplest form of LP rule. r1 is the

label of the rule which may be referred to later. Similarly, we
have the knowledge that “snakes feed on rabbits” and “ea-
gles feed on snakes” which are translated respectively into
facts:

r2 : feedsOn(snake, rabbit).
r3 : feedsOn(eagle, snake).
The collection of rules above forms an LP program

which can be used to answer question Q1. A query
feedsOn(rabbit,X), where X is a variable (in the stan-
dard sense of a variable in algebra/math), asks the pro-
gram to find an organism that the rabbits in the chain feed
on. The correct answer is carrot. Figure 1 gives an idea
of onlineSPARC, an online LP programming environment
(http://goo.gl/ukSZET) (Reotutar et al. 2016). Area 1 (in red
ellipse) is an editor containing the program above, and area
2 contains the query feedsOn(rabbit,X). When the “sub-
mit” button is pressed, the answer shows in area 3.

To answer question Q2, we add the knowledge that snakes
are extinct which is represented as

r4 : extinct(snake).
We also need some more general knowledge: “a species

will be extinct if what it feeds on is extinct.” This knowledge
can be represented by an LP rule of the form:

r5 : extinct(X) :- feedsOn(X,Y ), extinct(Y )
where the symbol “:-” is understood as “if.” The rule is

read as, from left to right, for any species X , X is extinct if
X feeds on Y and Y is extinct. (Note the rule is an accurate
representation of the knowledge in food chains, but needs to
be refined when a food web is modeled.) With these newly
added rules, the LP program concludes that eagles are ex-
tinct too. We have covered almost all major constructs of
ASP. We hope the examples above demonstrate the simplic-
ity of ASP and the naturalness of the modeling and show
how students are focused on domain knowledge. One can
also see that the lesson design method is a direct result of
the LP modeling methodology, and produces a seamless in-
tegration of Science and Computing.

The Integration Facilitates Science and Computer
Science Learning
We will argue how the LP based integrative curriculum
may facilitate learning of Science and Computer Science
at middle school level. Note that the learning outcomes are
achieved by both the Science content and its LP based com-
puter models. We do not argue that LP by itself creates trans-
fer learning in other domains (Klahr and Carver 1988).

Model-based learning is well accepted in science educa-
tion. It is anticipated to help students’ “attainment of ’con-
ceptual understanding’ in science at a level that goes be-
yond memorized facts, equations, or procedures.” (Clement

2000). It is well recognized that building computer models
or STEM problems helps STEM education, too (Harel and
Papert 1990; Guzdial 1994; Wilensky and Reisman 2006;
Council and others 2011; Repenning, Webb, and Ioannidou
2010; Sengupta et al. 2013; Jona et al. 2014) In fact, Harel
and Papert (Harel and Papert 1990) pointed out that learning
computing together with another subject can be more effec-
tive than learning each separately.

To illustrate how LP-based integration will facilitate Sci-
ence learning, we use the framework for K-12 science edu-
cation(Council and others 2012). The framework articulates
a vision of the scope and nature of K-12 education in sci-
ence, engineering, and technology. It has been implemented
by NGSS (Next Generation Science Standards) which had
been adopted by 16 states. NGSS are in line with TEKS –
Texas Essential Knowledge and Skills – which will be fol-
lowed in our implementation in Texas.

The framework divides the fundamental, core skills for
science and engineering into eight practices. SP1: asking
questions and defining problems. SP2: developing and us-
ing models. SP3: planning and carrying out investigations.
SP4: analyzing and interpreting data. SP5: using mathemat-
ics and Computational Thinking. SP6: constructing expla-
nations and designing solutions. SP7: engaging in argument
from evidence. SP8: Obtaining, evaluating, and communi-
cating information.

Our integration is able to cover the majority of the eight
practices. As shown in our integration example above (and
our curriculum in next section), students have to ask and an-
swer questions before building a computer model. Hence,
SP1 is in a prominent position in our curriculum. Our
curriculum is driven by developing computer models for
science problems and thus SP2 will be practiced inten-
sively under our integration methodology. Instead of mainly
through tinkering (Resnick and Rosenbaum 2013), students
are encouraged to identify the knowledge and represent it
into rules of computer models. Hence, SP3 and SP6 (so-
lution design) are addressed in our integration. When test-
ing and debugging their computer models, students have
to re-examine the program and apply the logical reason-
ing to explain the program behavior. Hands-on program-
ming creates an environment greatly motivating students’
discussions where explanations and arguments are heavily
involved. Therefore, SP6 (explanation) and SP7 are well
represented in our integration. As required in our model-
ing methodology, students have to identify the knowledge
used in modeling, represent it into English and then trans-
late the English description into rigorous rules. Our integra-
tion provides explicit and rigorous training of students in
terms of SP8. In fact, LP-based integration facilitates stu-
dents’ learning of mathematics and computer science (see
below for details). Students have abundant opportunities to
practice SP5 when building computer models.

As for mathematics, our integration helps address some
core practices as identified in the Common Core State Stan-
dards for Mathematics (Initiative and others 2010). MP2:
reason abstractly and quantitatively. MP3: construct viable
arguments and critique the reasoning of others. MP6: attend
to precision. As argued before, when developing and test-

9738



Figure 1: Screenshot of onlineSPARC

ing the computer models (e.g., that for food chain), all these
practices are explicitly involved.

As for computer science, LP provides a great way to
teach core computing practices of abstracting, problem solv-
ing, programming and communicating, as defined in AP
Computer Science Principles (CollegeBoard 2017) and K-
12 Computer Science Framework (2017) which is followed
by CSTA standards (2017).

The identification of relations and knowledge and the
translation of knowledge into rules are a clear practice of ab-
stracting. As a well-established programming paradigm, LP
offers a setting for students to learn and practice all aspects
of programming: design the model (program), edit the pro-
gram, learn the (informal yet rigorous to a great extent) syn-
tax and semantics, coding, testing and debugging. As shown
in our methodology and example, model development starts
from problem description. Hence problem solving is at the
core of our integration. In our modeling methodology, stu-
dents are required to identify (and write down) the knowl-
edge needed to solve the problem. They get an explicit train-
ing on communicating ideas and knowledge.

Appropriateness for Middle School Students
According to Piaget’s (1972) theory of cognitive develop-
ment, for example, children at age 11 to 15 demonstrate log-
ical use of symbols related to abstract concepts. At this age,
students have sufficient experience in life and STEM disci-
plines to allow for flexibility with regard to problem selec-
tion. The value of LP in teaching children has been recog-
nized since 1980s (Kowalski 1982; Guzdial 2004) and prac-
ticed by Kowalski and colleagues to teach children at age 10
to 12 (Kowalski 1982).

Curriculum Description
We develop two integration modules for 8th graders. Module
1 is on chemistry, and module 2 on chemistry and physics.

Module 1
Module 1 has 8 lessons (50 minutes a lesson). We assume
students have learned periodic table.

Lesson 1 introduces computer science and computer mod-
els. It consists of two parts. Part 1 contains the videos
on motivating students on computing and its applications.

One video is Computer Science is Changing Everything by
code.org (2016). The videos are followed by a discussion on
computer science and our daily life to further motivate stu-
dents’ interest in computer science. In part 2, by asking stu-
dents questions about their classroom, school and family, we
introduce the concept of models that human beings may use
to answer questions. Using human thinking as an analogy,
we introduce the concept of computer models for problem
solving. We then provide students an LP model for the fam-
ily in the earlier discussion. Students play with the model
by asking the computer the questions they were asked ear-
lier and extending the model with new knowledge. Through
this hands-on experience, students are expected to develop
an understanding of computer models.

Lesson 2 introduces LP concepts of relations, facts, and
queries. It first reviews the chemical symbols for elements. It
shows students how to add facts using relations to an existing
model provided to them. For example, to develop a model
for the symbol for Hydrogen, students need to expand the
given model with a comment about the knowledge:
% The symbol for Hydrogen is H
and then the fact representing it:
symbolFor(hydrogen, h).
Queries are introduced to answer questions to the model.

For example, for the question “is H the chemical symbol of
Hydrogen?” We type the query in onlineSPARC
symbolFor(hydrogen, h)?
Students then extend the model with knowledge from

other elements including carbon and phosphorous, and test
the model using queries.

Lesson 3 reviews new topics of atomic numbers and mass
numbers. Students are expected be able to answer questions
on the atomic number and mass number of Hydrogen and
other elements. It then introduces relations needed to answer
these questions. Students expand the given model with facts
about the new knowledge on atomic numbers and mass num-
bers, and then test the model with queries.

Lesson 4 first introduces students to variables using
queries. E.g., for question “what is the chemical symbol for
element silicon?”, we need a query
symbolFor(silicon, What)?
where What is a variable. The students also learn the an-

swer to the question is of the form What = si. Students

9739



practice variables by writing queries for similar questions
about other elements. This lesson then introduces the rela-
tion protonsOf(E,N) which denotes that the number of
protons of the atom of element E is N . The lesson concludes
with challenging the students to extend a given model with
facts representing the knowledge of the protons of hydrogen.

Lesson 5 introduces the concept of rules. It first reviews
knowledge relating the number of protons of an atom to its
atomic number: The number of protons of the atom of an
element E is N if N is the atomic number of the element E.
It then shows the rule for this knowledge:
protonsOf(E, N) :- atomicNumber(E,N).
Students will extend a given model by this rule. Then

they are asked to write a rule for the knowledge that derives
the atomic number from the number of protons. Throughout
the lesson the students are tasked with testing models with
queries.

Lesson 6 and 7 introduce more complex rules. Students
review domain knowledge on how the number of neutrons of
an atom relates to the atom’s mass number and protons. An
English description of this knowledge is: N is the number
neutrons of an atom E if M is the mass number of the atom
E, and N = M − P . The lesson then shows the rule
neutronsOf(E, N) :- massNumber(E, M),

protonsOf(E, P), N = M - P.
The students extend a given model with the rule above

and further by a rule defining the mass number of an element
using its number of neutrons and protons.

Lesson 8 continues the practice of writing rules. Students
review domain knowledge of obtaining the number of elec-
trons of an atom from that of the protons of the atom or the
atomic number. Students are asked to write a rule for the En-
glish description of that knowledge such as “N is the num-
ber of electrons of an atom E if N is the number of protons
of E.” The students also review the rule for getting the neu-
tron number from the number of protons and mass number
of the atom. The students are expected to test the model with
queries.

Module 2
Module 2 uses the same chemistry content in module 1, but
aims to teach students to write complete programs (instead
of expanding existing programs). It also introduces a physics
topic for students to model. It has 6 lessons.

Lesson 1 teaches student to create and save a file in On-
lineSPARC (so that they can develop a program across ses-
sions). Then it teaches students how to define a sort using
an example. Students are then expected to add new objects
to an existing sort and finally to create a sort on their own.
Predicate declarations are then introduced in this lesson.

In lesson 2 students learn to declare new predicates on
their own and add facts to their programs using the method-
ology they learned in module 1. Students are then instructed
to write more facts for the predicates that they declared ear-
lier in the lesson.

Lesson 3 Students learn to write a rule for this knowledge:
the number of protons of the atom of an element E is N if
N is the atomic number of element E. The rule is written as
protonsOf(E, N) :- atomicNumber(E, N).

Students are asked to test the rule using a query.
Lesson 4 evaluates students’ learning by asking them to

write new sorts, predicates, and rules to model the electron
number of an element. Students are given minimal guidance
during this lesson.

Lesson 5 introduces students to motion, a new science
topic to model. Students are expected to create the program
themselves. The first half of the lesson introduces the con-
cepts in motion through a physical demonstration. They in-
clude distance change and motion of an object relative to
another one. Students define sorts and declare predicates
needed to model the problem.

Lesson 6 continues the modeling of motion by adding
facts. The teacher starts by asking students to write a fact for
answering questions such as ”Has the distance between Bob
and Clara changed?”. Students add more facts on distance
change according to the situation in the physical demon-
stration in the previous lesson. Students then test the model
by asking queries. Finally we evaluate students’ learning by
asking them to relate distance change to motion of an ob-
ject relative to another one, and create predicates and rules
to model this relation.

Experience
We offered module 1 in fall 2017 to an 8th grade class, at
Laura Bush Middle school, with 22 students (5 of whom
are female and 10 of whom are Hispanic or African Amer-
ican). Module 2 was offered in spring 2018 to the (almost)
same class with 21 students (4 of whom are female and 9 of
whom are Hispanic or African American). 19 students are
in both classes. Module 1 was taught from Oct 23 to Nov
14 2017 and module 2 from from Apr 18 to May 8. Both
classes are for an elective course with name of STEM and are
taught by Staffen, one of the authors. In general, the course
STEM could cover any topics of STEM that is not covered
by the science and math course. Our integration of science
and computing fits this course well. The class meets for 50
minutes every two week days. Some sessions are canceled
due to school schedule, and one session in spring 2018 was
skipped due to the unavailability of Staffen. The last session
in 2018 was used for interview. Staffen had one year teach-
ing experience in middle school Science and STEM before
fall 2017. We will share our experience in curriculum devel-
opment, its implementation and student learning below.

Curriculum Development
Module 1 is the first integration module we ever devel-
oped. When designing the module, we assume the students
have learned the concepts related to periodic table. (The 8th
graders started to learn periodic table in fall 2017 in their
Science class. )

For the content of periodic table, the author Wang and
Zhang consult Staffen and other science teachers of the same
school, the TEKS standard on learning outcomes of chem-
istry for 8th graders, STAAR (State of Texas Assessments
of Academic Readiness) tests on science, and a textbook
following TEKS. By performance data on STAAR, students
performed poorly on some problems related to periodic ta-
ble. For example, a general question is: what is the total

9740



number of protons, neutrons and electrons in the atom of an
element that has a given mass number? An instance of this
question on cadmium with mass number of 112 appears in
STAAR. Only 35% students answer it correctly (Lead4ward
2017).

For Logic Programming, we resort to our research and
teaching experiences on it and textbooks on Logic Program-
ming such as (Gelfond and Kahl 2014; Clocksin and Mellish
2003).

We discover that almost all problems on periodic table in
the references we use can be modeled effectively by ASP.
We built ASP models for major concepts in chemistry at 8th
grader level from periodic table to reaction equations. The
models help us to develop a holistic view of chemistry and
of its computer modeling. As a result, we hope our module,
although covering only periodic table, will be laying a good
foundation for students for their future study of chemistry
and its modeling. We also document in details our under-
standing of the chemistry concepts and computer modeling
for future development of the integration module. We then
start to develop slides for module 1.

With the established structure for module 1 and experi-
ence in integration, the development of module 2 is much
faster.

Implementation

Teacher Preparation. In the module development phase,
for each lesson, we get feedback on all aspects of the les-
son such as appropriateness of content in terms of stu-
dents’ capacity and time constraint from Staffen. Staffen
goes through the slides, workbook and all programming
steps, and meet Wang and Zhang, authors of this paper, be-
fore each lesson.

Classroom Teaching. The teaching occurs at a computer lab
where each student has a desktop computer. The lab also has
a projector, a white board and enough space for students to
sit around the instructor. The instructor uses Google class-
room to make all information available to student.

For fall 2017, Staffen teaches the first four sessions while
Wang and Zhang assist (and observe) in class. Staffen co-
teaches with Zhang on next three sessions and with Wang
on the last session. In co-teaching, Wang and Zhang are on
content and Staffen on class management. After each ses-
sion, Wang and Zhang meet to identify problems and make
revisions for the next session. They finalize the revision after
meeting with Staffen.

For spring 2018, Staffen teaches all sessions except one
which is co-taught with Zhang.

The general class activities can be taken as an iteration
of a sequence of science component and computing compo-
nent. When reviewing the science topics, we usually ask the
students to sit around the instructor and make sure they are
able to answer the questions and understand the reasoning
behind the answers. For the computing part, continuous re-
finements are made on how to teach the computing concepts
and how to carry out the hands-on programming.

Hands-on programming seems to help engage students well

and thus is a substantial component of every session. There
are a few challenges related to hands-on programming.

1) How to balance the teaching of computing concepts
and hands-on programming. We tried different balances.
One extreme is: the instructor demonstrates programming
while explaining the computing concepts, and the students
follow the demonstration on their own computer. A better
balance, agreed among the instructors (Staffen, Wang and
Zhang), is the following. We ask students to sit around the
instructor. We introduce, in a period of 5 to 10 minutes, some
computing concept(s) to the students and make sure they can
answer questions related to these concepts. For example, af-
ter we show students that symbolFor(hydrogen, h) can be
used to represent the knowledge“the symbol for Hydrogen
is H,” we ask them to represent “the symbol for Carbon is
C.” We will then further ask students to tell us some similar
knowledge and then represent it into ASP rules. Then, stu-
dents will get back to their computers and start coding and
testing the rules just discussed. In this way, students have a
better understanding of the concepts, and is more effective
in programming.

2) We note a big variation in students’ programming per-
formance during class. Some students can finish and go be-
yond given programming tasks. For example, they can write
tens of facts on the symbols of elements in the first lessons
while some students are lost without knowing what to do
(partly due to lack of attention and partly due to the nu-
merous details needed for programming). This variation can
severely interrupt the flow of the class and the learning of the
students. To overcome this challenge, we introduce work-
book which is organized by programming activities and de-
tailed information is provided for each activity. For exam-
ple, students usually need to copy and paste some given pro-
gram segments into their editors. An activity is designed for
this task. In this activity, the link of given program segments
and instructions on how to copy and paste are given. When
lost, a student is pointed to the right activity and then fol-
lows the instructions. To reduce the performance variation,
we also introduce groups where students can help each other
and compete for credits. The groups seem to work well.

From Staffen and our interview with some students, stu-
dents of this class are less motivated and disciplined than
those of an average class. We employ some standard meth-
ods to enhance class management. The use of groups also
seems to help to engage more student who are not able to
focus on class otherwise.

Student Learning
Clinical Interview – Fall 2017. To assess how well stu-
dents understand computing, Staffen selects two students
from each performance group: above average, average, and
below average. The student performance is decided by Stef-
fen’s class observation. We conduct a clinical interview for
each student on Dec 1, 2017. The interview is done by a
researcher (one of authors: Bolduc, Wang and Zhang) and
a participant. Participants are asked to work out one prob-
lem while thinking aloud. Researchers ask probing questions
in order to prompt participants to explain and clarify their
thought processes. Clinical interviews last 30 minutes or un-

9741



til the participants complete their task – whichever come
first. Clinical interviews are video recorded. The problem
used in the interview can be found in the appendix. It tests
student’s capacity in using the onlineSPARC tool, abstrac-
tion at three levels (1: relation on concrete objects; 2: vari-
ables; and 3: rules), and programming (including syntax and
debugging). The problem consists of two parts. The first part
is about periodic table and is closely related to the class dis-
cussion, while the second part is about a family which is
only touched in the first two lessons. The second part aims
to test if students have a deeper understanding of computing
in a relatively new problem domain.

All students are doing well in using the onlineSPARC en-
vironment, in abstraction at levels of relation on concrete
objects and variables, and programming, except the follow-
ing cases. One student P (in below average group) did not
do well on abstractions at all three levels and on syntax. The
student mentions that he missed several sessions. One stu-
dent Q (in average group) did not do well on abstractions
at the levels of variables and rules. All students show satis-
factory understanding in abstraction at rule level except stu-
dents P and R (in below average group).

In summary, students demonstrate a good understanding
of the computing concepts. Students are weaker in abstrac-
tion at the rule level. There are three reasons. First, the time
span from the end of the intervention to the interview date
is long, about two weeks due to scheduling problems. Sec-
ond, abstraction at rule level is tested in a new domain (not
periodic table). Finally, students did not have experience on
solving a problem in a formal setting such as a clinical inter-
view.
Video-taped Class Observation. We filmed two groups for
each class in spring 2018. Group 1 consists of two above av-
erage students and Group 2 consists of two average students.
They are selected by Staffen. We were not able to film the
first lesson.

By the end of lesson 2, both groups understand objects
and sorts. They are able to add additional objects to a sort as
well as declare entirely new sorts. Both groups are also able
to add new facts for a given predicate.

During lessons 3 and 4 students begin encountering more
errors related to predicate declarations. Both groups make
mistakes by writing predicate declarations like rules
protonsOf(#element, #number) :-
atomicNumber(#element, #number).

One possible explanation for this error is that students are
confused between the declaration of a predicate and the def-
inition of a predicate using rules.

When either group encounters any error, their usual re-
sponse was to press the “Get Answer Sets” button which
provides a more specific error message. The students would
then check the line number provided in the error message.
Despite often not knowing what the error message was say-
ing, they usually find the error on the line they are directed
to.

By lesson 5 both groups are extremely competent at defin-
ing new sorts. Group 1 even gets this done before being
asked to model motion - the new science topic. Both groups
are also able to correctly declare a simple predicate. Group 1

is able to get a fully functioning program working and tested
by the end of class. Group 2 has a syntactically correct pro-
gram, however it does not make an attempt to test it.

In lesson 6 Group 2 is able to write a rule involving nega-
tion:
-motion(alice, daniel) :-
-distanceChange(alice, daniel).

However, both groups are still making the mistake of
declaring predicates like rules
motion(#object, #object) :-
distanceChange(#object, #object).

Group 1 also demonstrates creativity in trying to represent
that the distance between Bob and everyone else changes.
But they fail to represent it as a rule. Instead, they try the
following:
distanceChange(bob, O),
O = {bob, alice, chair, clara, daniel}

Exit Interview. We also conducted an interview with group
1 and 2 in the class on May 10, 2018, and it was video
recorded. Here is a summary of key points we learn from this
interview. All participants mention that students of this class
are much below average in terms of the their attitude and dis-
cipline. However, they mention that one student in the class
is able to get everything done. The participants believe that
the continuation of the study using the same chemistry con-
tent as in the previous semester helps to improve their under-
standing of the computing significantly. When asked if us-
ing science topics to learn computing is useful, they mention
that the familiarity of the science topics help their computer
modeling. Two of them mention that in this manner, they see
the meaningful application of computing to Science topics.
One said that it is more interesting when applying what they
are learning in science to programming. As for if program-
ming helps them understand the science topics better, one
mention that it offers a new way to look at things [science
topics], one mention that programming makes one to think
back [in science topics], and one mention that programming
makes learning Science concepts more interesting. During
the interview, it is mentioned that LP programs in Science
context make much more sense than programs they have
learned in JavaScript [partly because of the topic and partly
because of the programming language used]. Some mention
that writing complete program in this semester helps them
better understand LP-based modeling. Some mention their
early confusion between predicates and rules and now a bet-
ter understanding of the three sections of a program: sorts,
predicates and rules.

Related Work
The mainstream programming systems used in K-12 are
based on tinkering oriented visual languages such as Scratch
(Resnick and Rosenbaum 2013). These languages are very
successful in reaching a large audience. However, more re-
search is needed to understand how thinking occurs as stu-
dents are tinkering (Guzdial 2004). Furthermore, text-based
languages have the advantage over visual languages of “tak-
ing students deeper into both programming and science.”
(Sengupta et al. 2015; DiSalvo 2014). To make the appli-
cation of computer science to STEM authentic (Shaffer and

9742



Resnick 1999), the languages are supposed to allow students
to write programs to solve problems in their STEM study.
However, there is little research on text-based languages’
integration in middle schools, because of the dilemma that
most widely used languages in K-12 are algorithm-based
and there is a gap between the language constructs and the
scientific concepts (Sengupta et al. 2015). It should also be
noted that learning algorithm-based languages is time con-
suming (Sherin, diSessa, and Hammer 1993).

To address the challenge above, we propose to investi-
gate ASP, a text-based language, for the integration. There
is a natural correspondence between the ASP (logical) con-
structs and the knowledge needed to solve a STEM problem.
To build a computer model for a STEM problem, students
only need to use ASP to specify the subject-matter knowl-
edge needed without creating algorithms. Since ASP is also
simple, students can use it to solve non-trivial STEM prob-
lems. As we argued in earlier sections, the ASP based inte-
gration has the potential to improve students’ learning out-
comes in both STEM and CT.

However, LP has been largely overlooked during the last
two decades. In fact, in the 1980s, PROLOG, a represen-
tative of the classical LP, had been studied rather inten-
sively for teaching because it is supposed to allow a declar-
ative (i.e., logical) reading and understanding of a program
(and thus easy for children) (Mendelsohn, Green, and Brna
1991). Unfortunately, PROLOG is not purely declarative
and has a strong algorithmic (also called procedural) fea-
ture which requires comprehension of a difficult notional
machine (Taylor and Du Boulay 1986) by learners. A major
breakthrough in LP research (Gelfond and Lifschitz 1988;
Gebser, Kaufmann, and Schaub 2012) in the last three
decades was the establishment of ASP, which is purely
declarative and removes the procedural feature of PRO-
LOG. Thus, LP merits revisiting in the teaching context.
This project starts a new research line on LP-based integra-
tion. The proposed research will advance our knowledge on
how well LP-based approach improves STEM and comput-
ing learning outcomes. There is some recent work that stud-
ies LP in K-12 (Scherz and Haberman 1995; Stutterheim,
Swierstra, and Swierstra 2013; Beux et al. 2015), but none
of it applies purely declarative LP to STEM.

The benefits of declarative feature of a language were
demonstrated by existing work including Kowalski (1982)
where the declarative feature of PROLOG was emphasized,
and recent integration BOOTSTRAP (Schanzer et al. 2015)
where only “side-effect-free” functions and variables (which
are also classified as declarative) are allowed in program-
ming but procedural components such as mutable vari-
ables and assignment are forbidden. (BOOTSTRAP em-
ploys functional programming (FP). Although both FP and
LP are declarative, LP offers a more straightforward support
of knowledge representation and reasoning for many STEM
problems. For example, the simple LP program in Figure 1.
can be used to answer many interesting questions including
“what does rabbit feed on,” which is not the case for FP.)

Conclusion
In this research, we propose a methodology for developing
modules to integrate the teaching of science and computing
through developing computer models. Logic Programming
plays an essential role in making this integration seamless
and natural, and also makes it accessible to middle school
students. We have developed and implemented two mod-
ules for 8th graders. Through clinical interviews, video taped
class observations, exit interviews and our own experiences
with the class, Logic Programming based approach is ac-
cessible to the students. Majority of the students are able to
use the onlineSPARC environment, to abstract at different
levels, and to program. The current study is limited. In the
future, we plan to carry out more rigorous experiments and
analysis on how LP based integration facilitates students’
learning in science and computing.

Acknowledgment
We thank Michael Gelfond and Michael Strong for numer-
ous discussions on this topic, and Edna Parr and Jeremy
Wagner for their support in our implementation.

Appendix
Clinical Interview Problem
Q1-Q3, interviewer will copy the program testProgram-
chemistry to online SPARC.

Answer the following questions
Q1. We know symbolFor(E, S) denotes that the symbol

for element E is S. Ask the question “is na the chemical sym-
bol for sodium?” to the model.

Q2. We know atomicNumber(E, N) denotes that the
atomic number for element E is N. Ask the question “What
is the atomic number for sodium?” to the model.

Q3. Extend the model by including the following knowl-
edge: the atomic number of silicon is 14. Test if your model
works.
Q4 - Q6, interviewer will copy the program the program
testProgram-family to online SPARC.

Q4. We know mother(X, Y) denotes that person X is the
mother of Y. Ask the question “is Joann the mother of John?”
to the model. (Optional question to ask the model “Who is
the mother of John?”)

Q5. We know mom(X, Y) denotes that person X is the
mom of Y. Extend the model by including the following
knowledge: X is mom of Y if X is the mother of Y.

Q6. Test your model by asking the question Is Joann the
mom of John?

References
Beux, S.; Briola, D.; Corradi, A.; Delzanno, G.; Ferrando,
A.; Frassetto, F.; Guerrini, G.; Mascardi, V.; Oreggia, M.;
Pozzi, F.; et al. 2015. Computational thinking for beginners:
A successful experience using prolog. In CILC, 31–45.
Clement, J. 2000. Model based learning as a key research
area for science education. International Journal of Science
Education 22(9):1041–1053.

9743



Clocksin, W. F., and Mellish, C. S. 2003. Programming in
Prolog: Using the ISO standard. Springer Science & Busi-
ness Media.
code.org. 2016. Computer science is changing everything.
Video retrieved from https://www.youtube.com/watch?v=
QvyTEx1wyOY on September 4 2018.
CollegeBoard. 2017. Ap computer science principles: course
and exam descriptions. Retrieved from https://apcentral.
collegeboard.org/pdf/ap-computer-science-principles-
course-and-exam-description.pdf on September 4 2018.
Common Core State Standards Initiative. 2010. Common
core state standards for mathematics. http://www.
corestandards.org/assets/CCSSI Math%20Standards.pdf.
CSTA. 2017. Csta k-12 computer science standards. Com-
puter Science Teachers Association.
DiSalvo, B. 2014. Graphical qualities of educational tech-
nology: Using drag-and-drop and text-based programs for
introductory computer science. IEEE computer graphics
and applications 34(6):12–15.
Gebser, M.; Kaufmann, B.; and Schaub, T. 2012. Conflict-
driven answer set solving: From theory to practice. Artificial
Intelligence 187:52–89.
Gelfond, M., and Kahl, Y. 2014. Knowledge representation,
reasoning, and the design of intelligent agents: The answer-
set programming approach. Cambridge University Press.
Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In ICLP/SLP, volume 88,
1070–1080.
Guzdial, M. 1994. Software-realized scaffolding to facili-
tate programming for science learning. Interactive Learning
Environments 4(1):001–044.
Guzdial, M. 2004. Programming environments for novices.
Computer science education research 2004:127–154.
Harel, I., and Papert, S. 1990. Software design as a learning
environment. Interactive learning environments 1(1):1–32.
Jona, K.; Wilensky, U.; Trouille, L.; Horn, M.; Orton, K.;
Weintrop, D.; and Beheshti, E. 2014. Embedding com-
putational thinking in science, technology, engineering, and
math (ct-stem). In future directions in computer science ed-
ucation summit meeting, Orlando, FL.
K-12 Computer Science Framework. 2017.
http://www.k12cs.org. Retrieved on September 4 2018.
Klahr, D., and Carver, S. M. 1988. Cognitive objectives
in a logo debugging curriculum: Instruction, learning, and
transfer. Cognitive Psychology 20(3):362–404.
Kowalski, R. A. 1982. Logic as a computer language for
children. In ECAI, 2–10.
Lead4ward. 2017. http://lead4ward.com/docs/resources/
rt/science/rt science gr 08.pdf. Retrieved on September 4
2018.
Mendelsohn, P.; Green, T.; and Brna, P. 1991. Program-
ming languages in education: The search for an easy start.
In Psychology of programming. Elsevier. 175–200.

National Research Council. 2011. Report of a workshop on
the pedagogical aspects of computational thinking. National
Academies Press.
National Research Council. 2012. A framework for K-12 sci-
ence education: Practices, crosscutting concepts, and core
ideas. National Academies Press.
Piaget, J. 1972. Intellectual evolution from adolescence to
adulthood. Human development 15(1):1–12.
Reotutar, C.; Diagne, M.; Balai, E.; Wertz, E.; Lee, P.; Yeh,
S.-L.; and Zhang, Y. 2016. An online logic programming
development environment. In AAAI, 4130–4131.
Repenning, A.; Webb, D.; and Ioannidou, A. 2010. Scalable
game design and the development of a checklist for getting
computational thinking into public schools. In Proceedings
of the 41st ACM technical symposium on Computer science
education, 265–269. ACM.
Resnick, M., and Rosenbaum, E. 2013. Designing for tin-
kerability. Design, make, play: Growing the next generation
of STEM innovators 163–181.
Schanzer, E.; Fisler, K.; Krishnamurthi, S.; and Felleisen,
M. 2015. Transferring skills at solving word problems from
computing to algebra through bootstrap. In Proceedings of
the 46th ACM Technical symposium on computer science ed-
ucation, 616–621. ACM.
Scherz, Z., and Haberman, B. 1995. Logic programming
based curriculum for high school students: the use of ab-
stract data types. In ACM SIGCSE Bulletin, volume 27, 331–
335. ACM.
Sengupta, P.; Kinnebrew, J. S.; Basu, S.; Biswas, G.; and
Clark, D. 2013. Integrating computational thinking with k-
12 science education using agent-based computation: A the-
oretical framework. Education and Information Technolo-
gies 18(2):351–380.
Sengupta, P.; Dickes, A.; Farris, A. V.; Karan, A.; Martin,
D.; and Wright, M. 2015. Programming in k-12 science
classrooms. Communications of the ACM 58(11):33–35.
Shaffer, D. W., and Resnick, M. 1999. ” thick” authenticity:
New media and authentic learning. Journal of interactive
learning research 10(2):195–216.
Sherin, B.; diSessa, A. A.; and Hammer, D. 1993. Dynatur-
tle revisited: Learning physics through collaborative design
of a computer model. Interactive Learning Environments
3(2):91–118.
Stutterheim, J.; Swierstra, W.; and Swierstra, D. 2013. Forty
hours of declarative programming: Teaching prolog at the
junior college utrecht. arXiv preprint arXiv:1301.5077.
Taylor, J., and Du Boulay, B. 1986. Studying novice pro-
grammers: why they may find learning Prolog hard. School
of Cognitive Sciences, University of Sussex.
Wilensky, U., and Reisman, K. 2006. Thinking like a wolf,
a sheep, or a firefly: Learning biology through construct-
ing and testing computational theoriesan embodied model-
ing approach. Cognition and instruction 24(2):171–209.

9744


