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Abstract

Most applications of machine intelligence have focused on
demonstrating crystallized intelligence. Crystallized intelli-
gence relies on accessing problem-specific knowledge, skills
and experience stored in long term memory. In this paper, we
challenge the AI community to design AIs to completely take
tests of fluid intelligence which assess the ability to solve novel
problems using problem-independent solving skills. Tests of
fluid intelligence such as the NNAT are used extensively by
schools to determine entry into gifted education programs. We
explain the differences between crystallized and fluid intelli-
gence, the importance and capabilities of machines demon-
strating fluid intelligence and pose several challenges to the AI
community, including that a machine taking such a test would
be considered gifted by school districts in the state of Califor-
nia. Importantly, we show existing work on seemingly related
fields such as transfer, zero-shot, life-long and meta learning
(in their current form) are not directly capable of demonstrat-
ing fluid intelligence but instead are task-transductive mecha-
nisms.

Introduction, Motivation and Significance
The long term aim of Artificial Intelligence (AI) is for a
machine to exhibit levels of intelligence similar to those pos-
sessed by humans. Over the years, this has been seemingly
achieved in a plethora of different and more challenging cir-
cumstances: digit recognition (1980s) (LeCun et al. 1990),
3D object recognition (1990s) (Murase and Nayar 1995),
achieving a level of play equivalent to the world champion
of checkers (2000s) (Schaeffer et al. 2007), beating a cham-
pion at Jeopardy (2010s) (Ferrucci et al. 2013), and more
recently beating a world champion at the game of GO (Sil-
ver et al. 2016). However, these previous demonstrations of
machine intelligence have effectively focused on crystallized
intelligence which is the ability to use application specific
previously learnt knowledge, skills and/or experience. For
example, despite AlphaGo’s resounding success, none of
the knowledge it has demonstrated can be applied to other
situations.

The field of cognitive psychology defines fluid intelligence
as reasoning and/or problem solving that can be applied in a
variety of situations including those not seen as yet. Humans
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use fluid intelligence extensively, so that, unlike machines,
they do not need large training sets dedicated to each and
every new problem they encounter. Instead, we use problem
independent knowledge. However, to date, the AI community
has not sought to develop machines with fluid intelligence
which would require identifying and using complex patterns
beyond those found in any one specific problem. This is not
doubt partially due to most work optimizing performance on
a specific task.

A number of tests have been developed to assess fluid
intelligence in children and adults including the Raven’s Pro-
gressive Matrices (RPM) and Naglieri Nonverbal Ability
Test (NNAT). The latter is given to elementary school-age
children in a number of different states to determine their eli-
gibility to enter various gifted and talented education (GATE)
programs (see https://www.cde.ca.gov/sp/gt/ for the state of
California’s program). Though there are variations in these
different non-verbal assessments, they all have a similar mode
of presentation. For example, in Figure 1 we see examples of
the NNAT-like questions with three rows and three columns
of tiles with one tile been with-held. The testee is asked to
choose which of a list of given tiles best completes the pat-
tern. Consider the left most question, which is an example
of reasoning by analogy. Here, we see there is a horizontal
pattern (the common color of the back-most tile) which re-
stricts the answer set to be the first, second, or third option.
Similarly, a vertical pattern (the common color of the front
tile) can be applied also which allows the testee to arrive at
the second option. For the purposes of the discussion here,
it should be pointed out that the puzzle was solved using
knowledge beyond the puzzle itself.

In this paper, we pose several challenges to the AI commu-
nity to have a machine demonstrate fluid intelligence. Specif-
ically, we focus on non-verbal tests of intelligence such as
the RPM and NNAT.

• Two Year Challenge. Our short term challenge is for the
machine to score 95% accuracy on a forty TRUE/FALSE
question version of the NNAT Level D. That is, rather than
choose amongst several options, answer TRUE/FALSE
to a given tile being a continuation of the patterns in the
question. This is a test of verification ability. That is, the
AI need only verify if a given response provides a correct
answer.
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Figure 1: Examples of a non verbal test of fluid intelligence. From left to right reasoning tests of Analogy, Serial, Spatial and
Pattern Completion. Note that the NNAT test addresses all four types of reasoning whilst most RPM tests focus on analogy and
many systems are based around analogy reasoning methods (i.e. (Correa, Prade, and Richard 2012))

• Our medium term Five Year Challenge to the community
is for a machine to score 95% accuracy on a forty ques-
tion version of the NNAT Level D without any human
involvement.1 This would be sufficient for the machine to
be considered gifted amongst third grade children for the
majority of schools in California. This is a test of recogni-
tion ability to recognize the correct answer from a given
list.

• Our long term Ten Year Challenge to the community is
for a machine to generate the correct answer with 95%
accuracy on a forty question version of the NNAT Level
D. Note, here the potential answers are not given to the
machine and it must generate the correct answer. This is a
test of recall. Importantly, it guarantees fluid intelligence
since the machine can’t rely on secondary mechanisms
such as elimination or artifacts to guess the correct answer.

In the next section, we overview the history of intelligence
and aptitude testing and explain the significance, differences
and the need to focus on non-verbal tests such as RPM and
NNAT to assess machine fluid intelligence. In the subsequent
section we discuss how existing AI systems, though success-
ful, do not test fluid intelligence. Most importantly areas such
as transfer, zero-shot, meta and life-long learning in their cur-
rent form demonstrate crystallized and not fluid intelligence.
In our penultimate section we outline progress on work for
machines to take a non-verbal test of intelligence, most com-
monly RPM. We show that existing work does not completely
take the test but instead rely on a human coding the prob-
lem for a machine. Finally, we conclude by summarizing our
proposal.

Tests of Crystallized and Fluid Intelligence
Spearman (Spearman 1904) conjectured that even though
people exhibit intelligence in different ways (i.e. math ability,
problem solving or even crossword ability) there exists one
underlying type of intelligence, the g-factor. L.L. Thurnstone
(Thurstone 1938) pioneered the first alternative theory in the

1Many papers purportedly already achieve accuracy in excess
of 80% but they require significant human involvement to “code”
the problem for the machine. For example, in Figure 1 (left), human
guidance is required to code the order of the tiles into a symbolic
representation.

field of psychometric which involved administering 50+ tests
and grouping these tests into 7 types of intelligence/skills
(spatial ability, verbal comprehension, word fluency, percep-
tual speed, numerical ability, inductive reasoning and mem-
ory). Since this seminal work it has been generally accepted
that there are indeed several types of intelligence.

Cognitive scientists have widely argued that g-factor can
be broken into two separate but measurable forms of intelli-
gence: crystallized intelligence and fluid intelligence. Spear-
man refers to these as eductive (fluid) and reproductive (crys-
tallized) components of intelligence. The names are chosen
to create sharply differing visions. Crystallized intelligence
refers to intelligence derived from experience, culture and
education and is used to solve problems previously seen
before. The term crystallized then makes reference to well
structured (like a crystal structure) intelligence. In contrast
fluid intelligence measures abstract reasoning, mental agility
and adaptability to solve new problems not seen before. The
term fluid refers to intelligence that, like a fluid, can fill any
vessel/problem.

Here we intertwine a brief history of how children are
tested for giftedness and intelligence and aptitude testing
in general. The history of this area is complex and at times
painful as tests of intelligence and giftedness were used as
the basis of eugenics (Chase 1980).
IQ Tests. Early work identified giftedness with measures
of high IQ (Dai 2010) such as the Lorge-Thorndike Intelli-
gence Test introduced in 1954. This test was later revised and
named the CogAT6 test which measures intellectual ability
for children (see https://www.hmhco.com/programs/cogat)
that requires vocabulary and quantitative skills. It is has been
criticized as being culturally biased (Dai 2010); (Lohman
and Rocklin 1995) in that it tests for abilities learnt by only
some demographics. A common criticism is an example ques-
tion: “A light bulb is to a lamp like a flame is to what?” (the
correct answer being candle). However, it is argued this is
a test of crystallized intelligence that can only be learnt by
those who have access to knowledge about candles (either
directly or reading about them). However, IQ tests are often
used in multi-dimensional assessment such as mathematics.
Here, identification is first assessed for generalized intelli-
gence using any one of the general cognitive ability tests
mentioned previously and supplemented with more domain
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specific assessments of mathematical aptitude.
Non-verbal Tests. The U.S department of defense since
World War I has used non-verbal tests of intelligence. Group
administered tests placed new recruits many of whom had
poor or limited English ability (McCallum, Bracken, and
Wasserman 2001). These were quickly adopted by GATE
school programs after various lawsuits argued tests such
as COGAT Form 6 were biased against non-native English
speakers (Naglieri, Booth, and Winsler 2004).

The NNAT was developed by Jack Nagileri for Pearson. It
is administered to many 3rd grade children in the state of Cal-
ifornia to determine entrance into GATE. The test measures
nonverbal reasoning and general problem solving skills in
children. Each test has upto four components: i) Pattern com-
pletion, ii) Reasoning by analogy, iii) Serial reasoning and iv)
Spatial visualization (see Figure 1). Being completely non-
verbal it is considered culture neutral since it does not require
the ability to read, speak or write. Since the test contains
only core mathematical shapes such as circles, squares and
triangles it is not biased against socio-economically disadvan-
taged children or children where English is not the primary
language and hence is felt to not require crystallized intelli-
gence. This makes it an ideal choice for an AI as there is no
need to incorporate such social information. However, this
test is not without its flaws it can possess a wide range of
score variability and too many score very highly or lowly
(Dai 2010) . Other similar tests are available i.e. Otis-Lennon
School Ability Test (OLSA) but contain a verbal component.

Towards Fluid Intelligence
Here we will argue that most AI systems are designed to
posses crystallized intelligence as they are typically devel-
oped to solve a single problem that is well defined. Consider
the quintessential method of supervised machine learning
(Gress and Davidson 2018; Gilpin, Eliassi-Rad, and David-
son 2013; Wang et al. 2013; Chattopadhyay et al. 2013;
Davidson 2009) or even variations such as semi-supervised
learning (Qian and Davidson 2010) where the machine is
taught from annotated examples to solve a problem such as
digit recognition. Since the definition of a classic supervised
learning problem requires the classes to be known apriori
we are not solving a novel problem rather training a system
to solve an existing problem/task (T ) given a data set (D).
This is evident as most supervised learning is formulated
as an optimization function of fit to the training data plus
some regularization term to prevent overfitting. Most impor-
tantly, performance is optimized on that particular task and
the learnt knowledge, to say recognize digits, can not be used
used for related tasks (i.e. recognize letters) let alone distant
tasks.

Why Transfer, Multi-Task, One-Shot, Zero-Shot,
Meta and Life-Long Learning Is Insufficient.
On the surface it may seem that more recent advances in
machine learning are sufficient to allow machines to possess
the ability to think and reason abstractly. Here we argue that
though many methods superficially appear to be possible of
attaining fluid intelligence they are instead what we refer

Scenario Setting
Transfer Learn Tt from Ts, Dt

Multi Task Learn T1 . . . Tn from D1 . . . Dn

One Shot Tn+1 . . . Tn+m from D1 . . . Dn+m

Zero Shot Learn Tn+1 . . . Tn+m from D1 . . . Dn

Meta Learn parameters to train Tn+1

Life Long Learn Tn+1 from T1 . . . Tn, D1 . . . Dn+1

Table 1: Common new learning scenarios. All of these are
task transductive and do not generate the knowledge to solve
unseen tasks. Note for one shot learning the training sets for
tasks n+ 1 . . . n+m contain just one instance.

to as task-transductive, that is they are useful for learning
knowledge relevant to an already given task but not for learn-
ing generalized knowledge about tasks that are yet to be
encountered.

Transfer Learning. Transfer learning in its simplest form
allows applying a model learnt for a source task Ts (learnt
from data Ds) to a new target task Tt (learnt from data set Dt

and Ts). For example in our earlier work (Qian et al. 2014)
we showed how a model to rank cars could be used to build a
model to rank trucks using fewer examples. However, after
the learning task there is no new knowledge learnt/generated
that could be applied to another task such as ranking of buses,
rather the problem was task-transductive in that the source
task was used to learn a specific target task.

Multi Task Learning. Multi-task learning similarly tries
to learn multiple related tasks (T1 . . . Tk) at once using data
(D1 . . . Dk). For example in our work (Qian and Davidson
2010) we learnt to recognize many types of scenes using far
less data than learning one task at a time. However, again,
nothing was learnt that could be generalized beyond the exist-
ing multiple tasks and we were task-transductively learning
each task from the other.

One and Zero Shot Learning in Vision. The area of com-
puter vision has long sought to mimic the ability of humans
to recognize images given the ability of a six year old to to
recognize in excess of 10,000 different objects (Biederman
1987). The seminal work on one shot learning (Fei-Fei, Fer-
gus, and Perona 2006) motivates one-shot learning to use
(like humans) prior knowledge about object categories to
classify new objects. However, most one-shot learning work
is limited to learning a similarity function between say faces
and determining if a new face has been seen before which
cannot be used for other tasks. That is, this function cannot
be used for any other purpose beyond face recognition. Zero
shot learning attempts to learn a predictive function for a
set of classes T1 . . . Tn and use them to predict new unseen
classes Tn+1 . . . Tn+m. However, it is important to realize
that these new unseen tasks are already known.

Meta Learning. The educational psychological definition
of meta learning is to learn about ones own learning. However,
in the computer science literature it can be viewed as being
learning to tune parameters of a learning method and not
directly relevant to our work (Vilalta and Drissi 2002).

Life Long Learning in NLP. The natural language process-
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ing (NLP) field explores the area of learning many tasks
T1 . . . Tn and leveraging those results for a new task Tn+1

which is referred as life long learning (Chen and Liu 2016).
These tasks could be classification tasks and differs from
one and zero shot learning as each task has its own data set
D1 . . . Dn including the new task Dn+1.

Therefore though these methods use similar terminology to
those used in the cognitive science literature they do not have
the same aim. Therefore, not surprisingly these methods have
not been used to address non-verbal tests of fluid intelligence.
We now discuss the progress made towards that end.

Progress So Far: A Brief History of Machines
Taking Non-Verbal Tests of Intelligence

Work on machines taking non-verbal tests of intelligence be-
gan over twenty five years ago starting with the seminal work
of Carpenter (Carpenter, Just, and Shell 1990). It is important
to realize, that many of these systems were designed by the
cognitive science literature to better understand human intel-
ligence and the strength/weaknesses of tests not to maximize
performance. Most importantly, to our knowledge, none were
created with the specific aim of demonstrating a machine
possesses fluid intelligence.

Early work was entirely rule based starting with Car-
penter’s insight (Carpenter, Just, and Shell 1990) that five
core rules/patterns: all-same, all-different,
pairwise-progression, addition and
two-value distribution could be used to solve
many problem instances in RPM. For example Figure 1
actually has three patterns: all-same (row-wise applied
to back tile to and column-wise applied to front tile) and
all-different (diagonally applied to front tile). However this
work and most early work required a human to hand-code
problems in a symbolic form that these rules could be
applied to. Later work purports to not require hand coding
but instead provides a system where humans can provide
annotations to the problem which are then used by the
system (Forbus and Usher 2002). However, this work still
requires significant human involvement.

Work that directly takes the images and requires mini-
mal human involvement has only recently been explored
(Lovett and Forbus 2017). Some innovative work (McGreg-
gor, Kunda, and Goel 2010) have realized that the correct
answer most increases the self similarity of the completed ma-
trix and have used fractal geometric calculations to construct
such a measure. However, such work would be unable to pass
our third challenge since it is a test of secondary mechanisms
associated with the problem and not a generation mechanism.
In this year’s ICML a team from DeepMind (Santoro et al.
2018) attempted to allow a machine to solve RPM problems
with no human intervention. They viewed each panel in an
RPM question as a greyscale input feature map and tried
various deep learning architectures to address the problem.
Their results are promising but fall far short of our challenges.
When the machine is trained and tested on similarly shaped,
numbered and positioned objects accuracy was 75%. But this
drastically declined if the training and test data varied. For
example if the machine was trained on squares (i.e. in Figure

1 left) but the tests involved circles or even if different colors
or shades were used the machine performs quite poorly.

In summary some existing work provides a useful platform
to address the building of fluid intelligent machines. But there
are three main limitations with existing work:
• They are mainly aimed at understanding limitations of

tests and human intelligence and not directly at a machine
exhibiting fluid intelligence.

• They assume human involvement such as converting the
pictorial problem into a symbol representation with one
notable exception being the poorly performing DeepMind
work (Santoro et al. 2018).

• All existing work (in its current form) cannot address our
long term challenge of generating the correct answer 2.
This means we can never be sure if they are truly demon-
strating fluid intelligence but instead exploiting some sec-
ondary measure to answer questions correctly.
A thorough summary of computers taking many tests of

intelligence (not just non-verbal tests) exists (Hernández-
Orallo et al. 2016) which summarizes work until mid 2015.

Conclusion
Fluid intelligence is what allows humans to reason quickly
and productively in new settings. It can be considered one
of the most prized elements of human behavior and is tested
for in children in many states to determine entry into GATE
programs. However, most machine intelligence development
focuses on creation of crystallized intelligence which allows
the machine to solve a particular task but no problems unre-
lated to that task. Whilst new work such as transfer, zero-shot
and life long learning have similar names used in the cogni-
tive science literature they do not allow a machine to address
as yet unseen problems. Instead, we argue they are perform-
ing task-transduction: learning to perform tasks that may
have little (one-shot learning) or none (zero-shot learning)
training data but which have already been identified. We
propose three challenges to the AI community: a two year
challenge, a five year challenge and a ten year challenge. If
a machine meets these challenges it would be considered
gifted (according to a third grade standard) by most schools
in the state of California. Most existing work on these non-
verbal tests of intelligence are mostly aimed at understanding
human intelligence and/or the tests, but most importantly
(with one exception from DeepMind (Santoro et al. 2018))
are limited to requiring intensive human involvement to hand
code problems.

Another interpretation of the challenges set forward in this
paper is as an alternative to the Turing test. There is already
a body of literature on using tests of intelligence towards this
ends (Clark and Etzioni 2016; Schoenick et al. 2016).
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