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Abstract
Black box AI systems for automated decision making, often
based on machine learning over (big) data, map a user’s fea-
tures into a class or a score without exposing the reasons why.
This is problematic not only for lack of transparency, but also
for possible biases inherited by the algorithms from human
prejudices and collection artifacts hidden in the training data,
which may lead to unfair or wrong decisions. We focus on the
urgent open challenge of how to construct meaningful expla-
nations of opaque AI/ML systems, introducing the local-to-
global framework for black box explanation, articulated along
three lines: (i) the language for expressing explanations in
terms of logic rules, with statistical and causal interpretation;
(ii) the inference of local explanations for revealing the deci-
sion rationale for a specific case, by auditing the black box in
the vicinity of the target instance; (iii), the bottom-up gener-
alization of many local explanations into simple global ones,
with algorithms that optimize for quality and comprehensi-
bility. We argue that the local-first approach opens the door
to a wide variety of alternative solutions along different di-
mensions: a variety of data sources (relational, text, images,
etc.), a variety of learning problems (multi-label classifica-
tion, regression, scoring, ranking), a variety of languages for
expressing meaningful explanations, a variety of means to au-
dit a black box.

Open the Black Box
We are evolving, faster than expected, from a time when hu-
mans are coding algorithms and carry responsibility of the
resulting software quality and correctness, to a time when
machines automatically learn algorithms from sufficiently
many examples of the algorithms’ expected input/output be-
havior. It is dramatically urgent that machine learning and
AI be explainable and comprehensible in human terms; this
is instrumental for validating quality and correctness of the
resulting systems, and also for aligning the algorithms with
human values, as well as preserving human autonomy and
awareness in decision making.

On the contrary, the last decade has witnessed the rise of
a black box society (Pasquale 2015). Ubiquitous obscure
algorithms, increasingly often based on sophisticated ma-
chine learning (ML) models trained on (big) data, which
predict behavioural traits of individuals, such as credit risk,

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

health status, personality profile. Black boxes map user fea-
tures into a class or a score without explaining why, be-
cause the decision model is not comprehensible to stake-
holders, even to expert data scientists. This is worrying not
only for the lack of transparency, but also for the possible bi-
ases hidden in the algorithms. Machine learning constructs
predictive models and decision-making systems based on
data, i.e., the digital records of human activities and deci-
sions, such as opinions, movements, preferences, judicial
sentences, medical diagnoses, performance scores, etc. Con-
sequently, ML models may reflect human biases and preju-
dices, as well as collection artifacts and sample selection bi-
ases, possibly leading to unfair or simply wrong decisions.
Many controversial cases have already highlighted that dele-
gating decision-making to black box algorithms is critical in
many sensitive domains, including crime prediction, person-
ality scoring, image classification, personal assistance, and
more (Pedreschi et al. 2018).

A missing step in the construction of an ML model is
precisely the explanation of its logic, expressed in a com-
prehensible, human-readable format, that highlights the bi-
ases learned by the model, allowing to understand and vali-
date its decision rationale. This limitation impacts not only
information ethics, but also accountability, safety and in-
dustrial liability (Danks and London 2017; Kingston 2016;
Kroll et al. 2017). Companies increasingly market services
and products with embedded ML components, often in
safety-critical industries such as self-driving cars, robotic as-
sistants, domotic IoT systems, and personalized medicine.
An inherent risk of these components is the possibility of in-
advertently making wrong decisions, learned from artifacts
or spurious correlations in the training data, such as recog-
nizing an object in a picture by the properties of the back-
ground, due to a systematic bias in training data collection.
How can companies trust their products without understand-
ing the rationale of their machine learning components?

Likewise, the use of machine learning models in scientific
research, for example in medicine, biology, socio-economic
sciences, requires explanations not only for trust and accep-
tance of results, but also for the very sake of the openness of
scientific discovery and the progress of research.

An explanation technology would be of immense help
to companies for creating safer, more trustable products,
and better managing any possible liability they may have.
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From the citizen’s perspective, the EU General Data Protec-
tion Regulation (GDPR), entered into force in Europe on 25
May 2018, introduces a right of explanation for individu-
als to obtain “meaningful information of the logic involved”
when automated decision making takes place with “legal ef-
fects” on individuals “or similarly significantly affecting”
them1. Without an enabling technology for explanation this
right will either remain “dead letter”, or will just outlaw
many opaque AI systems (Goodman and Flaxman 2016;
Malgieri and Comandé 2017). Explanation is at the heart
of a responsible, human-centric AI, across multiple industry
sectors and scientific disciplines. An inescapable challenge,
a cornerstone to develop AI systems aimed at empowering
and engaging people, not at replacing them.

Despite the soaring recent body of research on inter-
pretable ML a practical, widely applicable technology for
explainable AI has not emerged yet. The challenge is hard,
as explanations should be sound and complete in statistical
and causal terms, and yet comprehensible to multiple stake-
holders such as the users subject to the decisions, the devel-
opers of the automated decision system, researchers, data
scientists and policy makers, authorities and auditors, in-
cluding regulation and competition commissions, civil rights
societies, etc. Stakeholders should be empowered to reason
on explanations, to understand how the automated decision-
making system works on the basis of the inputs provided by
the user; what are the most critical features; whether the sys-
tem adopts latent features; how a specific decision is taken
and on the basis of what rationale/reasons; how the user
could get a better decision in the future.

The problem can be articulated in two different flavors:

• eXplanation by Design (XbD): given a dataset of train-
ing decision records, how to develop a machine learning
decision model together with its explanation;

• Black Box eXplanation (BBX): given the decision
records produced by an obscure black box decision
model, how to reconstruct an explanation for it.

In the XbD problem setting, we would like to empower the
data scientist in charge of developing a decision ML model
with the means to provide also an explanation of the model’s
logic, in order to prevent from making unfair, inaccurate or
simply wrong decisions learned from artifacts and biases
hidden in the training data and/or amplified or introduced
by the learning algorithm. At the same time, we would like
to preserve the liberty of the data scientist to use any kind of
ML task, including non-interpretable models such as com-
plex deep learning or ensemble models. In this scenario,
where the data scientist has full control over the model’s
creation process, the development of an explanation is es-
sentially a further validation step in assessing the quality of
the output model (in addition to testing for accuracy, absence
of overfitting, etc.). The explanation is also an extra deliver-
able of the learning process, sustaining transparency and the
trust of the stakeholders who will adopt the model.

In the harder BBX problem setting, we would like to em-
power the data scientist with means for auditing and finding

1http://ec.europa.eu/justice/data-protection/

an explanation for a black box designed by others. In this
case, the original dataset on which the black box was trained
is not known, and neither are the internals of the model. In
fact, only the decision behaviour of the black box can be ob-
served. In our framework, we assume that the black box can
be queried to acquire data about its decision behaviour, or
that such data can be gathered by participating individuals.

We focus on the open challenge of how to construct mean-
ingful explanations in the XbD and BBX cases, and delin-
eate a novel research direction inspired by early methods for
local explanations (including our own), i.e., methods to ex-
plain why a certain specific case has received its own classi-
fication outcome. We propose a new local-first explanation
framework: expressive logic rule languages for inferring lo-
cal explanations, together with bottom-up generalization al-
gorithms to aggregate an exhaustive collection of local ex-
planations into a global one, optimizing jointly for simplic-
ity and fidelity in mimicking the black box. We argue that
the local-first approach has the potential to advance the state
of art significantly, opening the door to a wide variety of al-
ternative technical solutions along different dimensions: the
variety of data sources (relational, text, images, etc.), the va-
riety of learning problems (binary classification, multi-label
classification, regression, scoring, ranking, etc.), the variety
of languages for expressing meaningful explanations, the va-
riety of means to audit the black box.

Ideally, more informative causal explanations should be
provided, that capture the causal relationships among the
(endogenous as well as exogenous) variables and the de-
cision, based on the data observed by appropriately query-
ing the black box. Why moving from purely statistical to
causal explanations? ML models are used to classify under
the assumption of independent and identically distributed
data, generated by the same fixed distribution. Causal mod-
els would enable to classify under changing distributions,
e.g., would allow to perform what-if reasoning under realis-
tic dynamic scenarios.

A Very Succinct State of the Art
Although attempts to tackle interpretable machine learn-
ing and discrimination-aware data mining exist for sev-
eral years now, there has been an exceptional growth of re-
search efforts in the last couple of years, with new emerg-
ing keywords such as black box explanation and explain-
able AI. We refer to our comprehensive, up-to-date sur-
vey (Guidotti et al. 2018b), and account briefly here for the
major recent trends. An early study on the nature of ex-
planations from a psychological viewpoint is (Leake 1992).
Many approaches to the XbD problem attempt at explain-
ing the global logic of a black box by an associated inter-
pretable classifier that mimics the black box. These meth-
ods are mostly designed for specific machine learning mod-
els, i.e., they are not agnostic, and often the interpretable
classifier consists in a decision tree or in a set of deci-
sion rules. For example, decision trees have been adopted
to explain neural networks (Krishnan, Sivakumar, and Bhat-
tacharya 1999) and tree ensembles (Tan, Hooker, and Wells
2016), while decision rules have been widely used to explain
neural networks (Augasta and Kathirvalavakumar 2012;
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Andrews, Diederich, and Tickle 1995) and SVM (Support
Vector Machines) (Fung, Sandilya, and Rao 2005). A few
methods for global explanation are agnostic w.r.t. the learn-
ing model (Lou, Caruana, and Gehrke 2012; Henelius et al.
2014).

A different stream of approaches, still in the XbD setting,
focuses on the local behavior of a black box (Guidotti et al.
2018b), searching for an explanation of the decision made
for a specific instance. Some such approaches are model-
dependent and aim, e.g., at explaining the decisions of neural
networks by means of saliency masks, i.e., the portions of the
input record (such as the regions of an image) that are mainly
responsible for the outcome (Xu et al. 2015; Zhou et al. 2016;
Nugent and Cunningham 2005). A few more recent meth-
ods are model-agnostic, such as LIME (Ribeiro, Singh, and
Guestrin 2016; Singh and Anand 2018). The main idea is to
derive a local explanation for a decision outcome y on a spe-
cific instancex by learning an interpretable model from a ran-
domly generated neighborhood of x, where each instance in
the neighborhood is labelled by querying the black box. An
extension of LIME using decision rules (called Anchors) is
presented in (Ribeiro, Singh, and Guestrin 2018), which uses
a bandit algorithm that randomly constructs the rules with
the highest coverage and precision. Our group has designed
LORE (Guidotti et al. 2018a), a local explanator that builds
a focused exploration around the target point, and delivers
explanations in the form of highly expressive rules together
with counterfactuals, suggesting the changes in the instance’s
features that would lead to a different outcome. When the
training set is available, decision rules are also widely used
to proxy a black box model by directly designing a transpar-
ent classifier (Guidotti et al. 2018b) which is locally or glob-
ally interpretable on its own (Lakkaraju, Bach, and Leskovec
2016; Malioutov et al. 2017; Craven and Shavlik 1995).

To sum up, despite the soaring attention to the topic, the
state of the art to date still exhibits ad-hoc, scattered results,
mostly hard-wired with specific models. A widely applica-
ble, systematic approach with a real impact has not emerged
yet. This is a tremendous obstacle to develop a human-
centric AI, a danger for the digital society. In our view, a
black box explanation framework should be:
1. model-agnostic: it can be applied to any black box model;
2. logic-based: so that explanations can be made compre-

hensible to humans with diverse expertise, and support
their reasoning, and be extensible to handle causal rea-
soning by using meta-logic and abduction;

3. both local and global: it can explain both individual
cases and the overall logic of the black-box model;

4. high-fidelity: it provides a reliable and accurate approx-
imation of the black box behavior.

The four desiderata do not coexist in current proposals.
Logic-based decision rules have proven useful in the sub-
problem of explaining discrimination from a purely data-
driven perspective, as demonstrated in the lively stream of
research in discrimination-aware data mining, started by our
research group in 2008 (Pedreschi, Ruggieri, and Turini
2008; Ruggieri, Pedreschi, and Turini 2010), but it is un-
likely that rules in their simplest form will solve the general

explanation problem. Global rule-based models, trained on
black box decision records, are often either inaccurate, over-
simplistic proxies of the black box, or too complex, thus
compromising interpretability. On the other hand, purely lo-
cal models, such as LIME or our method LORE mentioned
above, do not yield an overall proxy of the black box, hence
cannot solve the XbD and BBX problems in general terms.

How to Construct Meaningful Explanations?
To tackle the challenge, we propose a broad direction of
research for constructing meaningful explanations: a local-
to-global framework for explanation-by-design that, beyond
statistical explanations, also investigates causal explana-
tions. Alongside, it is also needed to develop: (i) an expla-
nation infrastructure for the benchmarking of the methods,
equipped with platforms for the users’ assessment of the ex-
planations and the crowd-sensing of observational decision
data; (ii) an ethical-legal framework, both for compliance
and impact of the developed methods on current legal stan-
dards; and (iii) a wide-variety of case studies of explanation-
by-design in challenging domains, e.g., in health and fraud
detection applications, to validate the approaches.

Local-to-Global for Explanation by Design
Let us consider the XbD problem of discovering an expla-
nation for a high-quality black box model b learned over a
training dataset of labelled examples (x, y), where y is the
class label and x is a vector of observed features; let us con-
centrate on binary classification, i.e., y ∈ {0, 1}. Our frame-
work works under the following three assumptions.

H1: Logic explanations. The cognitive vehicle for offering
explanations should be as close as possible to the lan-
guage of reasoning, that is logic. From simple proposi-
tional rules up to more expressive, possibly causal and
counterfactual logic rules, many options of varying ex-
pressiveness exist to explore the trade-off between accu-
racy and interpretability of explanations.

H2: Local explanations. The decision boundary for the
black box b can be arbitrarily complex over the training
set, but in the neighborhood of each specific data point
(x, y) there is a high chance that the decision boundary is
clear and simple, likely to be accurately approximated by
an interpretable explanation.

H3: Explanation composition. There is a high chance that
similar data points admit similar explanations, and sim-
ilar explanations are likely to be composed together into
slightly more general explanations.

H2 and H3 are motivated by the observation that if all data
points in the training set are surrounded by complex decision
boundaries, or if any two data points admit very different
explanations due to different decision boundaries, then b is
likely to be in overfitting, unable to generalize from training
data of insufficient quality, thus contradicting the basic as-
sumption. These assumptions suggest a two-step, local-first
approach to the XbD problem, also applicable to the BBX
problem if the black box can be queried without limitations:
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Local Step. For any example in the training set (or any
other example) labeled by the black box b, i.e., for any
specific (x, y′), where y′ = b(x) is the label assigned by
b to x, query b to label a sufficient set of examples (local
dataset) in the neighborhood of (x, y′), which are then
used to derive an explanation e(x, y′) for x. The expla-
nation answers the question: why b has assigned class y′
to x? and, possibly, also its counterfactual: what should
be changed in x to revert the outcome? (see our recent
paper (Guidotti et al. 2018a).)

Local-to-Global Step. Consider as an initial global expla-
nation the set of all local explanations e(x, y′) constructed
at the local step for each available individual example
(x, y′), and synthesize a smaller set by iteratively com-
posing and generalizing together similar explanations, op-
timizing for simplicity and fidelity.

The local-first explanation framework may be articulated
along different dimensions: the variety of data sources (re-
lational, text, images, ...), the variety of learning problems
(binary classification, multi-label classification, regression,
scoring, ranking, ...), the variety of languages for expressing
meaningful explanations. The various technical options for
each dimension yield a large number of combinations that
call for suitable explanation models and algorithms. Local
explanation methods need to consider different ways for au-
diting the black box, as well as many alternatives for learn-
ing local explanations. The local-to-global methods need to
consider alternative ways of synthesizing multiple explana-
tions into more general ones.

Regarding reasoning mechanisms, simply providing the
user with the explanations computed by the algorithms may
not work. There may be too many local explanations, or
the user may need to ask specific questions: For what rea-
sons are the applications of a specific population or profile
rejected? Which explanations highlight potential discrimi-
nation of, e.g., protected minorities? What combinations of
features are most strongly correlated to (or are a cause of)
a negative decision? It is needed to design reasoning mech-
anisms capable of mapping such high-level questions into
queries to the global explanation, providing answers for the
users. Such reasoning methods can be realized in logic by
using meta-logic. Moreover, appropriate interfaces need to
be designed, to convey the answers in meaningful visual and
textual forms, as well as visual exploration for advanced
users, leveraging also on available visual analytics tools,
e.g., (Krause, Perer, and Ng 2016).

From Statistical to Causal Explanations
Machine learning leverages statistical associations in obser-
vational data that, in general, do not convey information
about the causal dependencies among the observed vari-
ables and the unobserved confounding variables. Nonethe-
less, ML models are often used within decision making
processes in the real world, so that certain observed fea-
tures are the causes of specific effects, i.e., the decision out-
comes. The science of causal inference and learning has de-
veloped tools, such as Causal Graphical Models and Struc-
tural Causal Models (Peters, Janzing, and Scholkopf 2017;

Pearl and MacKenzie 2018; Bareinboim and Pearl 2016),
to answer certain interventional questions (what if some-
thing changes?) or retrospective questions (what would have
happened had a different choice been made?). Such tools
have not been applied specifically to explain ML mod-
els, with a few exceptions dealing on specific issues, such
as discrimination inference (Zhang and Bareinboim 2018;
Bonchi et al. 2017; Caliskan, Bryson, and Narayanan 2017;
Caravagna et al. 2016) and reasoning on sample selection
bias (Bareinboim and Pearl 2016). It is natural to investi-
gate the causal structure that an ML model has inferred from
the training data, establishing a link between causality and
black box explanation. First, it is interesting to explore how
the techniques for data-driven causal discovery, aimed at re-
constructing plausible graphs of causal dependencies in ob-
servational data (see, e.g., (Huang et al. 2018)), may be used
to achieve more informative and robust explanations. Sec-
ond, it is promising to explore how the techniques for causal
inference may be used for driving the audit of a black box in
the local explanation discovery.

A Platform for Explainable AI
It is crucial to establish an “open science” infrastructure for
sharing experimental data and explanation algorithms with
the research community, creating a common ground for re-
searchers working on explanation of black boxes from dif-
ferent domains. It is also crucial to develop dedicated partic-
ipatory platforms, which support the engagement of a crowd
of users to check the comprehensibility and usefulness of the
provided explanations for the decision they got, thus sup-
porting campaigns of validation of the proposed technical
solutions, and to provide data about their experience in in-
teracting with black-box services.

The platform should enable validating our approach in
realistic cases in challenging domains, such as health-care,
e.g., explaining systems such as DoctorAI, based on a multi-
label Recurrent Neural Network trained on patients’ Elec-
tronic Health Records (Choi et al. 2016). The objective is
to devise explanations for “extreme” multi-label classifica-
tion, also delivering causal explanations, based on curated
data sources such as MIMIC-III (Johnson et al. 2016). Other
example domains include fiscal fraud detection (Bonchi et
al. 1999) and car insurance telematics and driver profil-
ing (Nanni et al. 2016)).

An Ethical/Legal Framework for Explanation
The research direction illustrated in this paper has a strong
ethical motivation. It aims to empower users against un-
desired, possibly illegal, effects of black-box automated
decision-making systems which may harm them, exploit
their vulnerabilities, and violate their rights and freedom.
On one hand, it is needed to comply with the relevant le-
gal frameworks, the European GDPR in particular. On the
other hand, it is needed to investigate the impacts towards
ethics and law. In particular, are the provided explanations
useful (i) for the realization of the right of explanation provi-
sions of the GDPR? (ii) for the industrial development of AI-
powered services and products? (iii) in revealing new forms
of discrimination towards new vulnerable social groups?
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