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Abstract

We demonstrate a self-supervised approach which learns to
detect long-range obstacles from video: it automatically ob-
tains training labels by associating the camera frames ac-
quired at a given pose to short-range sensor readings acquired
at a different pose.

Introduction
We consider a robot capable of detecting obstacles only
at short range (e.g. using proximity sensors). We demon-
strate an approach for automatically learning to perceive
long-range obstacles, given as input an image acquired by
a forward-facing uncalibrated camera.

Self-supervised approaches have been frequently used for
ground robot navigation, detecting obstacles or traversable
regions (Dahlkamp et al. 2006; Brooks and Iagnemma 2012;
Pinto and Gupta 2016). We use self-supervision to automati-
cally collect training data while the robot randomly explores
the environment. For a frame acquired at time t, ground
truth information concerning the presence of an obstacle at a
given distance (e.g., 20 cm) in front of the robot is obtained
from the binary outputs of the proximity sensors observed at
a different time t′, i.e. when the robot is at a specific, differ-
ent pose (in our example, 20 cm in front of the pose it had
at t). The resulting information is collected in a dataset, and
used for training a model mapping the camera frame to the
presence of obstacles at a set of predefined distances.

This approach is an instantiation of a general idea appli-
cable in other contexts (Nava et al. 2019), and extends our
previous work (demo at AAAI 2018 (Toniolo et al. 2018)),
where we only predicted the current outputs of the proxim-
ity sensors given the current camera frame; in that case, the
practical applicability of the system was limited as the range
of the camera-based obstacle detection could not exceed the
range of the proximity sensors (about 8 cm).

System
Platform
We demonstrate the approach on a Mighty Thymio (Guzzi et
al. 2018), a differential drive robot equipped with 5 forward-
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Figure 1: The Mighty Thymio robot. In blue, the proximity
sensors’ range. In red, the camera’s field of view.

looking infra-red proximity sensors with a range of approxi-
mately 5 cm to 10 cm, depending on the color and size of the
obstacle. The robot is also equipped with a forward-looking
720p webcam with an horizontal field of view of 68◦, used
as a long-range sensor (see Figure 1).

Data Acquisition
Robot odometry, proximity sensor readings and camera
frames are gathered using an ad-hoc controller which ran-
domly explores the environment; data was automatically
collected from 10 different scenarios with very different
floors and obstacles, for a total of 90 minutes.

Self-supervised Learning
We train a model which, given a camera frame, predicts 31×
5 binary labels. Those are defined as the output that each
of the 5 front-looking proximity sensors would have if the
robot had advanced straight for a given distance (0 to 30 cm
in steps of 1 cm).

Let p(t) denote the pose of the robot at time t; a training
instance is composed by the camera image acquired at time
t, and a set of 31× 5 automatically generated binary labels,
which may be unknown for some of the 31 distances. In par-
ticular, for a given distance di between 0 and 30 cm, we look
in the dataset for a time ti such that p(ti) is at a distance di
in front of p(t). If such a ti is found, the corresponding 5
proximity sensor outputs are associated to the 5 labels for
di; if such a ti does not exist, these labels are unknown.
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Figure 2: Five instances from the acquired dataset, each coming from a different scenario. Bottom: camera frame. Top left (red):
predictions of a model trained on the other scenarios (one column per sensor; one row per distance: 0 to 30cm). Top right (blue):
automatically generated ground truth labels. Gray rectangles denote missing labels.

The resulting dataset (with partially-known labels) is used
to train a convolutional neural network, similar in structure
to the one used in (Toniolo et al. 2018), which is trained
using a masked loss to account for partially unknown labels.

Figure 3 reports the area under the receiver operating
characteristic curve (AUC) values obtained for each sensor-
distance pair on testing data from different scenarios. We
observe that the quality of the prediction decreases with dis-
tance; also, obstacles which are on the side or lie very close
to the robot are harder to detect (because they may be partly
or completely out of the camera view).
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Figure 3: Mean AUC value obtained for each sensor (col-
umn) and distance (row).

Demonstration
We demonstrate the approach with a real Mighty Thymio
robot implementing a pre-trained model onboard: the model
generates predictions in real-time, which are used as the only
input to a controller which steers away from detected obsta-
cles. As a result, the robot reacts to obstacles much earlier

than it would if it was only using proximity sensors. We also
visualize the robot view and its predictions in real-time on a
laptop. We can also demonstrate self-supervised learning by
acquiring data on the spot to adapt the model.

Trained models generalize well to different scenarios: we
can demonstrate usage on different robots (e.g. a TurtleBot)
or even as an obstacle detector for the blind, when given data
from a belt-mounted camera.

Videos, datasets, and code to reproduce our re-
sults are available at: https://github.com/idsia-robotics/
learning-long-range-perception/.
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