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Abstract

Reinforcement learning presents a challenging problem:
agents must generalize experiences, efficiently explore the
world, and learn from feedback that is delayed and often
sparse, all while making use of a limited computational bud-
get. Abstraction is essential to all of these endeavors. Through
abstraction, agents can form concise models of both their sur-
roundings and behavior, supporting effective decision making
in diverse and complex environments. To this end, the goal
of my doctoral research is to characterize the role abstrac-
tion plays in reinforcement learning, with a focus on state
abstraction. I offer three desiderata articulating what it means
for a state abstraction to be useful, and introduce classes of
state abstractions that provide a partial path toward satisfy-
ing these desiderata. Collectively, I develop theory for state
abstractions that can 1) preserve near-optimal behavior, 2) be
learned and computed efficiently, and 3) can lower the time
or data needed to make effective decisions. I close by dis-
cussing extensions of these results to an information theoretic
paradigm of abstraction, and an extension to hierarchical ab-
straction that enjoys the same desirable properties.

1 Introduction
The focus of my doctoral research is on clarifying the repre-
sentational practices that underlie effective Reinforcement
Learning (RL), drawing on Information Theory, Compu-
tational Complexity, and Computational Learning Theory.
The guiding question of my research is: “How do intelli-
gent agents come up with the right abstract understanding
of the worlds they inhabit?”, as pictured in Figure 1. I study
this question by isolating and addressing its simplest unan-
swered forms through a mixture of theoretical analysis and
experimentation.

My interest in this question stems from its foundational
role in many aspects of learning and decision making: agents
can’t model everything in their environment, but must neces-
sarily pick up on something about their surroundings in order
to explore, plan far into the future, generalize, solve credit
assignment, communicate, and efficiently solve problems.
Abstraction is essential to all of these endeavors: through
abstraction, agents can construct models of both their sur-
roundings and behavior that are compressed and useful. The
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Figure 1: The process of abstraction.

goal of my research is to explain the nature of effective ab-
straction, hopefully giving rise to a theoretical understand-
ing of what underlies effective RL more generally.

To realize this goal, I propose three desiderata that char-
acterize what it means for an abstraction to be useful for RL:

(D1) SUPPORT EFFICIENT DECISION MAKING: The ab-
straction enables fast planning and efficient RL.

(D2) PRESERVE SOLUTION QUALITY: Solutions produced
from the abstracted model should be useful enough for
solving the desired problems.

(D3) EASY TO CONSTRUCT: Creating the abstractions
should not require an unrealistic statistical or compu-
tational budget.

To date, no unifying theory of abstraction adheres to all three
desiderata, or clarifies how to flexibly trade-off between the
three prescribed properties.

2 Completed Research
My recent published work focuses on a theory of state ab-
straction that endeavors to satisfy the desiderata.

2.1 State Abstraction
The goal of state abstraction is to reduce the size of a given
problem’s state space by grouping together similar states
in a way that doesn’t change the essence of the underly-
ing problem being solved (Bertsekas and Castanon 1989;
Singh, Jaakkola, and Jordan 1995; McCallum 1996; Diet-
terich 2000; Andre and Russell 2002; Givan, Dean, and
Greig 2003; Li, Walsh, and Littman 2006), dating back to
work in approximating dynamic programs (Whitt 1978).
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Concretely, a state abstraction maps each true environmental
state into an abstract state:

Definition 1 (State Abstraction): A state abstraction,
φ : S → Sφ, maps each environmental state s ∈ S to
an abstract state sφ ∈ Sφ, where typically |Sφ| � |S|.

In previous work, we introduce new theory for approx-
imate state abstraction in RL and planning (Abel, Her-
shkowitz, and Littman 2016). Our main result clarifies when
approximate abstractions can still preserve near-optimal be-
havior. At a high level:
Theorem 1 Consider an approximate abstraction φf,ε,
where, for ε ∈ R≥0 and for any two states s1, s2 ∈ S:

φf,ε(s1) = φf,ε(s2) =⇒ |f(s1)− f(s2)| ≤ ε, (1)

with f : S → R some function on state. There exist choices
of f such that value is preserved under the abstraction:

∀s∈S : V ∗(s)− V π
∗
φ(s) ≤ εηf , (2)

for some constant ηf ∈ R≥0 that depends on choice of f .
The takeaway here is that approximate forms of abstraction
(those where ε > 0 on the right hand side of Equation 1)
can still retain near-optimal behavior (depending on choice
of function f ). So, state abstraction can satisfy the D2.

Our follow up work extends the above result to the life-
long learning setting in which an agent must interact with a
collection of problems all sampled from the same distribu-
tion (Abel et al. 2018). Our main results state that: (1) There
exist families of state abstractions that can be computed ef-
ficiently, and (2) These abstractions can also be used in the
lifelong setting in a way that preserves near-optimal behav-
ior with high probability. We conduct simple experiments to
corroborate these results, suggesting that state abstractions
can lower sample complexity in lifelong RL. The takeaway
is that state abstractions can satisfy D2 and D3.

2.2 Current Work
Our recently completed work extends the above state ab-
straction theory to an information theoretic framework (Abel
et al. 2019). We draw a parallel between compression, as
understood in Information Theory, and state abstraction, as
studied in RL, to offer the first formalism and analysis of the
trade-off between compression and performance made by
state abstraction. We build on Rate-Distortion theory (Shan-
non 1948) and the Information Bottleneck method (Tishby,
Pereira, and Bialek 1999) to develop an algorithm for
computing state abstractions that approximates the optimal
trade-off between compression and performance. In the fu-
ture, we hope to show how the appropriately compressed
model can lower the computational and sample complexity
of planning and learning. With the right kind of additional
analysis, we hope to show the sense in which abstractions
can trade-off between D1 and D2.

3 Future Work
There are three specific questions I hope to address before
finishing my dissertation. First, as described in Section 2,

we have established theory that suggests there exist state
abstractions that can trade-off between D1 and D2. How-
ever, whether there is a single theory can satisfy (or trade-
off between) all three desiderata remains an open question.
My first goal is to answer this question by extending the in-
formation theoretic work described in the previous section.
Second, all of my state abstraction work so far typically fo-
cuses on discrete and often finite state spaces. I am interested
in extending our analysis to the case where the underlying
state space is continuous. Third, I plan to investigate the re-
lationship between state and action abstraction. Specifically,
I am working with a simple scheme for clarifying the condi-
tions under which state-action abstraction pairs can inform
hierarchical abstractions that satisfy the desiderata.
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