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Introduction
To identify the appropriate action to take, an intelligent
agent must infer the causal effects of every possible action
choices. A prominent example is precision medicine, that
attempts to identify which medical procedure (t ∈ T )
will benefit each individual patient (x) the most. This re-
quires answering counterfactual questions (Rubin 1974;
Pearl 2009) such as: “Would this patient have lived longer,
had she received an alternative treatment?”. There are sev-
eral reasons why this is more challenging than conventional
supervised machine learning:

First, for the ith patient, the training data only contains
the observed outcome ytii of the administered treatment
ti but never the outcome(s) of the alternative treatment(s)
¬ti ∈ T \ {ti} – i.e., counterfactual outcome(s). This
challenge can be mitigated if we are allowed to perform
experimentation (on-line exploration), or have access to a
randomized controlled trial (RCT) dataset (Pearl 2009). In
many cases, however, conducting an experiment or RCT is
expensive, impractical, or even infeasible. As a result, we
are forced to approximate causal effects from data that is
available: off-line datasets collected through observational
studies. Such datasets, however, often exhibit sample selec-
tion bias (Imbens and Rubin 2015). That is, the treatment t
assignment procedure depends on some or all of the attributes
x of the individual – i.e., Pr( t |x ) 6= Pr( t ). This becomes
detrimental to the accuracy and confidence of counterfactuals
prediction when the same covariates that determine treatment
also [partially] determine the outcome y. Existence of such
confounders is the second challenge with causal inference.

There are two categories of performance measures for eval-
uating causal inference methods. Population-based measures
help find the one treatment that works [somewhat] well for
the entire population. Individual-based measures, in contrast,
focus on identifying the best treatment option personalized to
each individual x. An example of individual-based measure –
that requires estimating outcomes of all possible treatments
– is Precision in Estimation of Heterogeneous Effect (Hill

2011): PEHE =
√

1
n

∑n
i=1 (ei − êi)

2, where ei = y1i − y0i
is the true Individual Treatment Effect (ITE) for individual i,
êi = ŷ1i − ŷ0i is the estimated ITE, and n is the sample size.
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Figure 1: An example observational dataset (best viewed
in color). Here, to treat heart disease, a doctor prescribes
surgery (t=1) to younger patients (•) and medication (t=0)
to older ones (+) – hence we have sample selection bias.
The unobservable counterfactuals are illustrated by small and
faint • (for ¬t=1) and + (for ¬t=0).

Research Questions
In my PhD, I will explore ways to address the above-
mentioned challenges associated with causal effect estima-
tion; with a focus on devising methods that enhance perfor-
mance according to the individual-based measures. Specifi-
cally, my Research Questions (RQs) are the following:

1. The first challenge makes it impossible to properly evalu-
ate the proposed methods with real-world observational
datasets, since the ground truth for counterfactuals are in
fact unobservable. Therefore, we require algorithms that
can generate realistic synthetic observational datasets that
exhibit various degrees of sample selection bias.

The remaining RQs are related to the second challenge:

2. Learning a representation space (Bengio et al. 2013) Φ,
shared between treatment arms, is a good strategy to re-
duce sample selection bias. This is effective if distributions
of the transformed instances Φ(x ) belonging to every
treatment arm are similar – making the dataset close to an
RCT. Reasonably, it should be possible to further alleviate
the bias by incorporating appropriate weighting schemes.

3. Employ generative models to create new virtual samples
that can fill in the gap in order to help better predicting
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the counterfactuals. Methods such as Variational Auto-
Encoder (Kingma and Welling 2014) and Generative Ad-
verserial Network (Goodfellow et al. 2014)

4. Many observational datasets include censored instances.1
These instances should not be ignored as they might em-
bed important information regarding the effectiveness of
a certain treatment (e.g., a highly effective medication
might make follow-up unlikely). We need survival predic-
tion methods that can exploit censored data for achieving
a higher performance in causal effect estimation.

5. Devise methods that accommodate counterfac-
tual regression when more than two treatment
options are available – i.e., (i) categorical (e.g.,
T = {bypass, stent,medication} for curing heart
disease), (ii) multiple-binary (e.g., T = {0, 1}k – i.e.,
combination2 of a subset of medications for controlling
depression), or (iii) T ⊆ R (e.g., the right dosage of
insulin for a diabetic patient).

Related Work
Learning treatment effects from observational studies is
closely related to “off-policy learning in contextual bandits”
and “learning from logged bandit feedback” (Swaminathan
and Joachims 2015). A common family of statistical methods
use weighting to handle this sample selection bias. An exam-
ple is Inverse Propensity Scoring (IPS), which tries to balance
the source (observed) and target (counterfactual) distributions.
Such methods however neglect the fact that controlling for
the covariates that only determine the treatment (not out-
come)3 can have a negative impact on the accuracy of ITE
predictions. Because the weights calculated according to such
factors are irrelevant and perhaps detrimental to predicting
accurate outcomes (both observed and counterfactual).

Another family of methods use representation learning
to find a representation space Φ that reduces the sample se-
lection bias between treatment arms. For example, Atan et
al. (2018) learn Φ using an auto-encoder that tries to mini-
mize the cross entropy loss between Pr( t ) and Pr( t |Φ(x ) ).
However, by training an auto-encoder, they force their repre-
sentation space to be able to reproduce all the covariates in x
from Φ – some of which might have had no effect on deter-
mining the observed outcome. In another work, Shalit et al.
(2017) learn Φ such that Pr(x | t = 0 ) and Pr(x | t = 1 ) are
as close to each other as possible, provided that Φ(x ) retains
enough information that a learned regression model ht( Φ )
(with t being the administrated treatment) can generalize well

1That is, when some of the outcomes (time to event – e.g., death)
are only partially known (e.g., we know the ith patient survived 5
months but do not know if she died a day later, a year, or ...), either
because the respective patients have lost to follow-up, or the data
collection period has ended without the event being occurred.

2However, the algorithm should be mindful of drug interactions;
since some combinations might neutralize the effect of the treatment
or worse, be detrimental to the patient’s health.

3For example, a doctor might be less likely to prescribe an ex-
pensive treatment to poor patients (thus, imposing sample selection
bias in the data); although, outcomes of the possible treatments are
not particularly dependent on the patients’ wealth status.

on the observed outcomes. Neither of these methods, how-
ever, employ a context-aware weighting scheme to further
alleviate the sample selection bias.

Research Plan
I have already addressed RQ#1 in (Hassanpour and Greiner
2018) and RQ#2 whose paper is in preparation; planned to
be submitted to the IJCAI 2019. Table 1 summarized the
tentative timeline for the remainder of my PhD program.

Table 1: My PhD tentative timeline
TIME MILESTONE

2019 Feb. Publish results for RQ#3 at one of
NeurIPS

2019 Apr. Defend Proposal (Candidacy Exam)

2019 Sep. Publish results for RQ#4 at one of
AAAI / AISTAT

2020 Feb. Publish results for RQ#5 at one of
IJCAI / ICML / UAI / NeurIPS

2020 May Write up my PhD Dissertation
2020 Aug. Defend my PhD Dissertation
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