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Many data analytics problems involve data coming from
multiple sources, sensors, modalities or feature spaces, that
describe the object of interest in a unique way, and typically
exhibit heterogeneous properties. The varied data sources
are termed as views, and the task of learning from such
multi-view data is known as multi-view learning.

In my thesis, I target the problem of poverty predic-
tion and mapping from disparate multi-source data, namely
mobile phone data, satellite imagery, ground weather mea-
surements and open street maps. Additionally, census data
was used to get the regression targets for poverty. Cur-
rently, poverty is estimated through intensive socioeconomic
household surveys. However, this approach is costly and
time consuming and can only be realistically carried out for
a small sample of households, thereby making timely up-
dates of poverty challenging. Thus, the need is to timely
and accurately predict poverty and map it to spatially fine-
grained baseline data (Devarajan 2013).

The primary aim of my thesis is to develop novel multi-
view algorithms which are focused on the unique con-
straints and challenges of mapping poverty. Several chal-
lenges lie in establishing relationships between auxiliary
data sources (that are not collected to directly measure so-
cioeconomic deprivations, example mobile phones, satellite
imagery, weather measurements and open street maps) and
poverty, namely varying spatial, temporal and conceptual
granularity at which the different data are available. This ne-
cessitates an aggregation mechanism to link them to individ-
uals whose poverty is to be estimated. Other challenges in-
clude quantifying and mitigating the uncertainty associated
with each data source, and need for a validation mechanism
due to unavailability of ground-truth data.

Another aim is to relax the core assumptions faced by
existing multi-view learning algorithms. Most existing ap-
proaches either assume that the views are completely inde-
pendent or fully dependent. Methods operating under the
former assumption typically involve multi-kernel learning,
while those following the latter assumption aim at learning a
shared latent subspace or manifold. However, in real scenar-
ios, these assumptions are almost never truly satisfied. My
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aim is to develop learning algorithms that learn factorized
representations, where the subspace is divided into a shared
(capturing common variance across different views), and
private subspaces (capturing remaining variance). Besides
dimensionality reduction, the aim of this factorized repre-
sentation is to provide understanding of underlying structure
of data, and, thus, giving better accuracy for prediction, and
handling domain issues of missing data. I pose the problem
in both regression and classification settings.

Preliminary research has been done towards the goals of
the thesis. A naive way to work with multiple data sources is
concatenating the different feature spaces, and employing a
single classifier. I have explored the concatenation approach
while conceptualizing the idea of cognitive biometrics using
large scale social media data (Pokhriyal, Nwogu, and Govin-
daraju 2014; Pokhriyal et al. 2017).

Using Disparate Data Sources via GPs
I constructed two semantically distinct views: 1). mobile
phone view, using call data records and, 2). environmental
view, using satellite imagery, ground weather measurements
and open street maps. Here, poverty mapping is studied as
a regression problem, with continuous poverty values as-
sociated with each micro-region. The regression targets are
poverty values that are calculated from census data.

Gaussian process regression (GPR) (Rasmussen and
Williams 2006) models are independently trained on each
view, to infer poverty values. Gaussian Processes (GP) fall
under the class of kernel methods, where the choice of dif-
ferent kernel functions enables one to learn different non-
linear relationships between the independent and target vari-
ables. Each GP-based model provides a probabilistic esti-
mate of poverty for a given location, including the mean and
variance of the estimates. The variance provides a measure
of uncertainty, which allows us to combine the predictions
from the multiple views.

To predict poverty for a location from a single data view,
the following model is assumed:

yi = β>xi + f(xi) + ε (1)

where yi is the target poverty value and xi is a vector of
independent variables derived from the particular view for
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the ith location. The first term is a linear combination of
the independent variables. The function f() models the non-
linear relationship between yi and xi. The residual term, ε,
models the remaining unexplained noise, and is modeled as
a zero-mean Gaussian random variable, i.e., ε ∼ N (0, σ2

n).
We assume a Gaussian Process (GP) prior on f(), with fol-
lowing kernel function:

k(x, x′) = σ2
f exp

(
−‖x− x′‖2

2`2

)
exp

(
−‖xs − x′s‖2

2`2s

)
(2)

where xs and x′s are the spatial coordinates (latitude, longi-
tude) of the commune centers corresponding to x and x′.

To predict poverty for a location, we use independently
trained GPR models on the two views, and their outputs
i.e. the posterior Gaussian distributions are combined in
weighted manner, where the view that provides small pre-
dictive variance is assigned a higher weight.

The model parameters are estimated by maximizing the
marginalized log-likelihood of the training data. We cou-
ple the GP model with elastic net regularization during the
model learning phase to remove the effect of spurious fea-
tures. This allows for automatic relevant feature selection
and learning a parsimonious and interpretable model.
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Figure 1: Comparison of actual and predicted poverty values
for all communes and urban areas of Senegal.

Figure 1 shows the relationship between poverty values
predicted by our model and those estimated from census
(this is the validation set). We observe a linear relationship
with lower values for urban areas (shown in red) and higher
values for rural areas (shown in blue), along with uncer-
tainty values depicted (Pokhriyal and Jacques 2017). We get
a Pearson correlation of 0.91 using disparate data, compared
to single source data (Pearson correlation of 0.89 using only
mobile data, and 0.84 using only environment data).

Discriminative Factorized Representations
Motivated by the additional challenges like missing views,
I focus on learning factorized subspace representations in a
classification setting, which consists of shared and private
subspaces corresponding to each view.

Existing works on factorized subspaces is focused on un-
supervised settings (Salzmann et al. 2010), (Ek et al. 2008),

mainly with linearity assumption (Xue et al. 2017). My fo-
cus is learn representations, which can give insight into the
underlying relationships among the disparate views, benefi-
cial for prediction and in case of missing views. I propose
a linear method (called Discriminative Factorized Subspace
(DFS)), and its non-linear version (kernel DFS (KDFS)).
The optimization formulation is efficiently solved using gen-
eralized eigenvalue decomposition, which provides a glob-
ally optimal solution, via Constrained Generalized Rayleigh
Quotient. Our algorithms are rigorously tested using spatial
cross-validation strategy, and with missing views; and can
classify a location as poor or not, with 83% accuracy.

I propose a latent variable model, assuming that the ob-
served data is generated by smooth mappings from a fac-
torized latent space to the observed views. Smooth reverse
mappings are assumed too. Training step involves learning
these mappings, which are used during inference to output
the representations of an unseen multi-view instance. While
any existing subspace learning algorithm can be used to
learn the shared space, the view-specific representations are
learnt by extracting projections, that are orthogonal to the
shared subspace, while maximizing the between-class and
minimizing the within-class variances.

Significance to the Domain and Next Steps
The significance of this work, lies in its capability to gen-
erate spatially detailed poverty maps in a timely and cost-
effective manner, which can provide policy makers assis-
tance between intercensal periods, or in areas of conflicts.

As future work, I plan to extend the concept of discrimi-
native factorized representations to regression, and multiple
outputs setting, where the different outputs correspond to va-
riety of socio-economic deprivations.
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