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Abstract
The key assumption in Weighted Constraint Satisfaction
Problems (WCSPs) is that all constraints are specified a pri-
ori. This assumption does not hold in some applications that
involve users preferences. Incomplete WCSPs (IWCSPs) ex-
tend WCSPs by allowing some constraints to be partially
specified. Unfortunately, existing IWCSP approaches either
guarantee to return optimal solutions or not provide any qual-
ity guarantees on solutions found. To bridge the two ex-
tremes, we propose a number of parameterized heuristics that
allow users to find boundedly-suboptimal solutions, where
the error bound depends on user-defined parameters. These
heuristics thus allow users to trade off solution quality for
fewer elicited preferences and faster computation times.

Introduction
In Weighted Constraint Satisfaction Problems (WCSPs), the
goal is to find an optimal solution, given a set of prefer-
ences expressed by means of cost functions (Shapiro and
Haralick 1981; Schiex, Fargier, and Verfaillie 1995). A key
assumption in all these constraint-based models is that all
the constraints are specified or known a priori. In some
applications, such as roster and meeting scheduling prob-
lems, some constraints encode the preferences of human
users. As such, they may not be fully specified simply be-
cause it is unrealistic to accurately know the preferences
of users for all possible scenarios in an application. Moti-
vated by such applications, (Tabakhi et al. 2017a; 2017b;
2018) assumed all cost functions are not specified a priori
and ask users a number of preset questions to elicit cost func-
tions before the search. While (Gelain et al. 2010) proposed
the Incomplete WCSP (IWCSP) problem formulation, which
extends WCSPs by allowing some constraints to be partially
specified (i.e., the costs for some constraints are unknown).
To solve IWCSPs, they introduced a series of algorithms that
interleave the search process, which seeks to find a good so-
lution, and the preference elicitation process, which seeks to
obtain some subset of cost functions from the user.

Unfortunately, existing approaches fall into two extremes
– they are either guaranteed to find optimal solutions or they
do not provide any quality guarantees on the quality of so-
lutions found. In this paper, we seek to bridge the two ex-
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Figure 1: IWCSP Example

tremes by introducing parameterized heuristics that allow
one to find boundedly-suboptimal solutions. In other words,
these heuristics will allow users to trade off solution quality
for fewer elicited preferences and faster computation times.

An Incomplete Weighted Constraint Satisfaction Prob-
lem (IWCSP) extends WCSPs and is defined by a tuple
P = 〈X ,D,F , F̃〉, where X , D, and F are a set of finite
variables, domains, and weighted constraints, respectively,
which are the same as WCSPs. The key difference is that
the set of fully-specified constraints F are not known to an
IWCSP algorithm. Instead, only the set of partially-specified
constraints F̃ are known. More formally, F̃ = {f̃1, . . . , f̃m}
is a set of partially-specified weighted constraints (or cost
tables). Each partially-specified constraint is a function f̃i :
"xj∈xfi Dj → R+

0 ∪ {∞, ?}, where ? is a special element
denoting that the cost for a given combination of value as-
signment is not specified. Further, the costs R+

0 ∪ {∞} that
are specified are exactly the costs of the corresponding spec-
ified constraints fi ∈ F . A solution x is a value assignment
to a set of variables Xx ⊆ X that is consistent with the vari-
ables’ domains. The cost FP(x) =

∑
f∈F,xf⊆Xx

f(x) is
the sum of the costs of all the applicable cost functions in
x. The goal is to find an optimal complete solution x∗ =
argminx FP(x) while eliciting as few unspecified costs as
possible.

Figure 1(a) shows the constraint graph of an example
IWCSP with three variables x1, x2, and x3 where the do-
mains areD1 = D2 = D3 = {0, 1}. Figure 1(b) shows both
the partially-specified and fully-specified cost tables for all
constraints. In this example, the optimal complete solution is
x∗ = 〈x1 = 0, x2 = 1, x3 = 0〉, which has a cost of 15. This
can theoretically be found, but not proven to be optimal, by
only eliciting the unknown cost f̃1(〈x1 = 0, x2 = 1〉) since
f2(〈x1 = 0, x3 = 0〉) is known.
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|X | # unknown # of elicited costs runtime (sec)
costs MBE SCE MBE SCE

5 12.51 8.26 10.73 3.14 0.10
6 18.39 12.31 14.89 31.89 0.51
7 24.18 16.5 18.27 260.48 3.49
8 33.06 22.28 25.46 179.88 36.67
9 42 31.44 33.76 3832.33 381.28

10 54 43.26 44.07 23630.17 4497.11

Table 1: Varying Number of Variables |X |

Parameterized Heuristics
A simple and straightforward extension of the depth-
first branch-and-bound (DFBnB) search algorithm to solve
IWCSP is as follows: Before expanding a node n with some
unknown costs, it elicits all the unknown costs associated
with that node and adds those costs to the known costs as-
sociated with that node before proceeding. We refer to these
costs as g(n). Further, one can use heuristics, referred to as
h(n), to estimate the cost to complete the partial solution at
node n and if those heuristics are underestimates on the true
cost, then they can be used to better prune the search space,
that is, when f(n) = g(n) + h(n) ≥ FP(x), where x is the
best complete solution found so far.

Smallest Cost Elicitation (SCE) Heuristic

The Smallest Cost Elicitation (SCE) heuristic counts the
minimal number of yet-to-be-elicited unknown costs that
must be elicited to complete the partial solution correspond-
ing to that node. Let φ(n) denote this number. Then, an un-
derestimate on the minimal cost to complete the partial solu-
tion is h(n) = φ(n) · L , where L is the smallest cost across
all functions f ∈ F . Thus, when using this heuristic, DF-
BnB prunes a node n if g(n) + w · φ(n) · L + ε ≥ FP(x)
, where x is the best complete solution found so far, w ≥ 1
is the user-defined relative error bound, and ε ≥ 0 is the
user-defined additive error bound. The solution found using
this pruning condition is then guaranteed to have a cost that
is bounded from above by w · FP(x∗) + ε, where x∗ is an
optimal complete solution.

Matrix-Based Elicitation (MBE) Heuristic

The Matrix-Based Elicitation (MBE) heuristic builds a fre-
quency matrix, where each row i corresponds to a range of
known and elicited costs [`i, ui) and each column j cor-
responds to a count j of yet-to-be-elicited unknown costs.
Each element ei,j of the matrix then corresponds to the
number of complete solutions under the subtree rooted at n
whose sum of known and elicited costs is in the range [`i, ui)
and whose number of yet-to-be-elicited unknown costs is j.
To use this heuristic, when evaluating a node n, DFBnB first
constructs a submatrix of the first i rows of the frequency
matrix, where `i ≤ FP(x) < ui and x is the best complete
solution found so far. Then, DFBnB prunes the node n if all
elements of this submatrix are zeros (i.e., all complete solu-
tions in the subtree rooted at n have known costs that are no
smaller than FP(x)).
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Figure 2: Solution Quality Trade off for Faster Runtime

Experimental Results
We generate 100 random (binary) graphs, where we var-
ied the number of variables |X | from 5 to 10, with the do-
main size |Di| = 4 for all variables, the constraint density
p1 = 0.4 and the fraction of unknown costs in each con-
straint i = 0.2. All known and elicited costs are randomly
sampled from [2, 100]. Table 1 tabulates the results for the
number of elicited constraint costs and the runtimes of DF-
BnB algorithm using our heuristics for solving IWCSPs. We
empirically show that our solver does not need to elicit all
unknown costs to find the optimal solution. In addition, Fig-
ure 2 shows the trade off between the solution quality and
the runtime. The runtime decreases by increasing the user-
defined additive error bound from 0 to 500 with increment
of 50.

Conclusions and Future Work
In this paper, we introduce parameterized heuristics that al-
low one to find optimal solutions as well as boundedly-
suboptimal solutions that also allow to trade off solution
quality for fewer elicited preferences and smaller runtimes.

In the future, we plan to investigate different forms of elic-
iting preferences (e.g., eliciting actual constraint costs ver-
sus eliciting ordering of constraint costs).
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