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Abstract

We study the problem of generating interpretable and veri-
fiable policies for Reinforcement Learning (RL). Unlike the
popular Deep Reinforcement Learning (DRL) paradigm, in
which the policy is represented by a neural network, the aim
of this work is to find policies that can be represented in high-
level programming languages. Such programmatic policies
have several benefits, including being more easily interpreted
than neural networks, and being amenable to verification by
scalable symbolic methods. The generation methods for pro-
grammatic policies also provide a mechanism for systemati-
cally using domain knowledge for guiding the policy search.
The interpretability and verifiability of these policies provides
the opportunity to deploy RL based solutions in safety critical
environments. This thesis draws on, and extends, work from
both the machine learning and formal methods communities.

Introduction
Many recent advances in Reinforcement Learning have been
through models that rely on a Deep Neural Network (DNN)
(Mnih et al. 2015). However, DNNs have been called “black-
box” models due to a fundamental drawback, these models
are difficult to interpret or to be checked for consistency for
some desired properties. Consequently, there is a growing
consensus that further advancements in AI research will re-
quire models that combine DNNs with other approaches and
methods. The primary contribution of this thesis will be to
explore and exploit the connections between automatic pro-
gram synthesis and deep reinforcement learning.

We propose a learning framework, called Programmati-
cally Interpretable Reinforcement Learning (PIRL) (Verma
et al. 2018), that is based on the idea of learning policies
that are represented in a Domain Specific Language (DSL).
An example of this approach, is to synthesize a program that
drives a car around a track, by controlling the car’s accelera-
tion and steering. The following example shows the kind of
high-level program our method finds for acceleration:

if −0.001 < hd(TrackPos) and hd(TrackPos) < 0.001

then PIDθ(Target1)

else PIDθ(Target2)
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In contrast, the DNN that represents a similar policy has
three hidden layers with 600 nodes each.

The intuition behind this work is that structured programs
in a high level DSL have three key benefits. First, the DSL
can be designed to be human-readable and is hence more in-
terpretable than a DNN. Second, the language can be used
to implicitly encode the learner’s inductive bias, which is
useful for agent generalization. Finally, it allows us to use
symbolic program verification techniques to formally rea-
son about the learned policies and check consistency with
correctness properties.

There have been efforts in deep learning that aim to make
DNNs more interpretable (Montavon, Samek, and Müller
2017), and to formally verify DNNs directly (Katz et al.
2017). The work in this thesis differs from these approaches
in that our framework generates high-level program source
code as output, which is used in place of the policy repre-
sented by the DNN. Efforts have also been made to use neu-
ral networks for learning programs in the growing field of
neural program synthesis and induction, (Murali et al. 2018)
is one such example. In these methods a DNN is typically
trained to guide the program search. Our approach differs
from these efforts in that we use DNNs trained on the RL
environment’s task directly.

Approach
We formalized the problem of performing synthesis for rein-
forcement learning policies in the PIRL framework (Verma
et al. 2018). In summary, we model a reinforcement learning
setting as a Partially Observable Markov Decision Process,
and we define a DSL which places a syntactic restriction on
the program search space. Then our goal is to find a pro-
gram with optimal reward: e∗ = argmaxe∈[[S]] R(e). Here
[[S]] denotes the set of programs permitted by a DSL S, and
R(e) is the agent’s expected aggregate reward under the pol-
icy represented by e.

The use of a DSL to provide syntactic constraints is in-
spired from work in the programming languages commu-
nity, where this approach has been formalized in a frame-
work called Syntax-Guided Synthesis (Alur et al. 2015). The
DSL also provides a principled mechanism to systemati-
cally include domain knowledge into the policy search. This
mechanism modifies the learner’s inductive bias. We note
that while DRL algorithms excel in end-to-end learning, to
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the best of our knowledge they currently lack methods for
specifying an inductive bias for the learner.

A key technical challenge in PIRL is that the space of
policies, despite syntactic constraints, is typically vast and
nonsmooth. This makes direct policy search extremely dif-
ficult. To address this, we proposed a new algorithm called
Neurally Directed Program Synthesis (NDPS). NDPS first
uses DRL to compute a neural policy that has high perfor-
mance. This network is then used to direct a local search
over programmatic policies. This strategy, inspired by imi-
tation learning (Ross, Gordon, and Bagnell 2011), allows us
to perform direct policy search in a highly nonsmooth space.
However, one key difference is that NDPS uses the expert
trajectories to only guide the local program search, unlike
the imitation learning setting where the goal is to match the
expert demonstrations perfectly.

We evaluate our approach in the task of learning to drive
a simulated car in the The Open Racing Car Simulator
(TORCS) environment. Our experiments demonstrate that
NDPS is able to find interpretable policies that, pass some
significant performance bars.

Ongoing and Future Work
There are many interesting directions to explore in the area
of programmatic policies for RL. I have identified two broad
categories for immediate attention.
Synthesis and Verification. Our policy synthesis approach
is uniquely positioned to benefit from improvements in both
DRL and program synthesis techniques. New methods in ei-
ther of these fields can be adopted in the NDPS algorithm.
I am also developing a new algorithm, that co-evolves the
neural and programmatic policies by interleaving the train-
ing of a DRL policy with the synthesis of a programmatic
policy. Using more powerful verification systems to prove
more complex and useful properties is another direction I
am exploring. Relatedly, I am developing methods to use
verification specifications to prune the search space during
the synthesis of programmatic policies.
Complex Applications There are many complex, ‘real-
world’ applications that we hope to explore as part of this
thesis. For example, new adaptive drug therapies have been
discovered via DRL for some diseases. These therapies are
unlikely to get regulatory approval due to the black-box na-
ture of DNNs. I am working with collaborators, to generate
interpretable versions of the existing neural policies via the
PIRL framework. This is an example of a situation where
the explainability of the policy to a human expert is funda-
mental to the adoption of the RL based solution. Members of
my lab are applying the PIRL framework to the problem of
path and task planning for quadcopters. These policies need
to have strong safety guarantees, as the cost of any failure is
catastrophic.

Contributions and Impact
For many domains DRL models are the current state of the
art method for finding RL policies. Therefore, methods that
address their drawbacks are likely to have a significant im-
pact on the field. This thesis aims to address two fundamen-

tal problems with DRL models, namely interpretability and
verifiability. In already published work (Verma et al. 2018)
we have formalized a new learning paradigm and shown
promising results with a method that tackles both of these
drawbacks.

In work currently under development, we propose a new
algorithm which interleaves the training of neural and pro-
grammatic agents, thus significantly improving the perfor-
mance and generalizability of the current best RL policy
finding methods. Going forward we will explore generating
results with stronger verification guarantees and applications
of the PIRL framework to safety critical cyber-physical sys-
tems.

Successful completion of this research program is likely
to create new avenues for researching connections between
the Machine Learning and Formal Methods literature. Fur-
thermore, by addressing some of the major concerns about
the current RL methods, this work is likely to advance the
applicability and adoption of RL based solutions to many
real world problems. It is also a significant possibility that
the contributions of this thesis will be applicable to other
paradigms of machine learning, like supervised learning,
that are currently dominated by deep neural networks.
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