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Introduction
In end-to-end learning of visuomotor behaviors, algorithms
such as imitation learning, reinforcement learning (RL), or
a combination of both, have achieved remarkable successes.
However millions of training samples are often required to
achieve the desired performance. Hence in practice human
demonstration can be used to speedup learning and improve
sample efficiency (Silver et al. 2016; Hester et al. 2018).

When an agent learns from human demonstration, it may
benefit from knowing where the human is allocating his or
her visual attention, which can be inferred from the gaze.
Humans have high acuity foveal vision only in the central
1-2 visual degrees of the visual field, covering the width of a
finger at arm’s length. Consequently humans learn to move
their foveae to the correct place at the right time in order to
process important task-relevant visual features (Hayhoe and
Ballard 2005). A wealth of information is encoded in human
gaze behaviors–for example, the priority of one object over
another in obtaining longterm reward. Therefore human at-
tention mechanism can be viewed as a powerful visual fea-
ture extractor for reward-seeking decision tasks.

We propose a framework that uses learned human visual
attention model to guide the learning process of an imitation
learning or reinforcement learning agent. We have collected
high-quality human action and eye-tracking data while play-
ing Atari games in a carefully controlled experimental set-
ting. We have shown that incorporating a learned human
gaze model into deep imitation learning yields promising
results. We plan to further improve the existing algorithm
for imitation learning, and incorporating visual attention into
deep reinforcement learning. Meanwhile we are studying
how visual attention is formed in a biological neural net-
work and hope to transfer that knowledge to artificial neural
networks.

Proposal
Related and Accomplished Work The relation between
attention and RL has been extensively studied by neu-
roscience community (Roelfsema and van Ooyen 2005;
Leong et al. 2017). In machine learning, (Mnih et al. 2014)
pioneered efforts to combine deep RL with visual attention,
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where attention is treated as a sequential decision problem
and is jointly trained with the control policy.

In my previous work we proposed the AGIL (Attention
Guided Imitation Learning) framework (Zhang et al. 2017;
2018). With collected human gaze data in Atari games, we
first train a deep network that can predict human visual at-
tention with high accuracy (the gaze network) and then train
another network to predict human actions (the policy net-
work). Incorporating the learned attention model from the
gaze network into the policy network significantly improves
the action prediction accuracy and task performance, see
Fig. 1a. Here human attention information helps the learn-
ing agent infer the correct decision state of the human by
highlighting the relevant visual features for that decision in
a high-dimensional state space.

Prior to deep RL, my research focused on a modularized
solution to the RL problems. Modular RL assumes that hu-
mans have limited attention resources hence cannot pay at-
tention to all state features at the same time. Therefore a
complex task should be decomposed into modules, where
each module is a simpler Markov decision process with re-
duced state space that is factorized from the original state
space (Rothkopf and Ballard 2013). My work used modular
RL as a cognitive model for human behaviors, and devel-
oped a corresponding sample-efficient modular inverse rein-
forcement learning (IRL) algorithm to retrieve the intrinsic
reward of human. Using virtual-reality and motion capture,
we collected human navigation decisions in a virtual room
with multiple subtasks. With the proposed modular IRL al-
gorithm, we were able to create an avatar which can infer
relative importance (reward) of different objects and goals
from observed human behavior, and generate walking trajec-
tories that are human-like in novel environment. The modu-
lar IRL significantly outperformed a standard Bayesian IRL
in modeling human behaviors.

Improving AGIL The key challenge for visual attention
guided learning is to fuse the attention information into the
decision (policy) network. In previous work a naive pipeline
architecture was used (predicting gaze first then feed the re-
sult into the policy network via element-wise masking). Fus-
ing multiple channels of information is well studied in the
computer vision community (Feichtenhofer, Pinz, and Zis-
serman 2016). We find that the design choices of a fusion
network, such as where (which layer) and how (which arith-
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Figure 1: (a) A comparison of game scores (mean ± standard deviation) between plain imitation learning from a previous
work (Hester et al. 2018), plain imitation learning using our dataset, and AGIL. (b) The state space provided to different
reinforcement learning algorithms for Atari Seaquest game.

metic operator) to fuse, significantly affect the task perfor-
mance. We plan to continue experimenting multiple network
architectures to fuse attention information.

Attention guided reinforcement learning Given our ini-
tial progress in modular RL and AGIL, it is natural to incor-
porate visual attention into deep RL. The assumption made
here is that visual features that capture human attention are
likely to be informative for deep RL. Deep Q-network has
demonstrated the effectiveness of end-to-end learning of vi-
suomotor tasks (Mnih et al. 2015). However, for games such
as Seaquest and MsPacman–which typically involve multi-
ple tasks–the performance is below human level. In addi-
tion, DQN takes millions of samples to train. The above
issues could be potentially alleviated by combining AGIL
and deep RL where attention model can help extract features
to speedup learning and to indicate task priority. Fig. 1b il-
lustrates the relation between the modular RL, the standard
RL, the attention-guided deep RL proposed, and the stan-
dard deep RL in terms of how they define their state space.

In addition, although the human attention is likely to be
useful for guiding a learning agent, it might be more impor-
tant to study whether that an agent can learn its own atten-
tion mechanism from experience. At current stage we are
working on understanding how attention is realized in ani-
mal nervous system from a neural coding standpoint (Bal-
lard and Zhang 2018). Our model suggests that the attention
gain effect may reflect the use of additional neurons by a
computational process. It is possible that a similar attention
mechanism can be implemented using the current artificial
neural networks, therefore a learning agent can learn atten-
tion and decision jointly and efficiently.

Below is a brief timeline for research plan.
1. Sep.-Dec.2018: Collecting another 22 Atari games’ hu-

man eye-tracking and decision data. The data is made
available to encourage similar research in Atari domain.

2. Sep.-Nov.2018: Experimenting different fusion architec-
tures for AGIL.

3. Nov.2018-Feb.2019: Experimenting how to incorporate
human attention into deep RL.

4. Feb.2019-: Investigating the possibility to implement an
neural attention mechanism such that a deep RL agent

can jointly learn attention and policy.
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