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Abstract

Applications that require heterogeneous sensor deployments
continue to face practical challenges owing to resource con-
straints within their operating environments (i.e. energy effi-
ciency, computational power and reliability). This has moti-
vated the need for effective ways of selecting a sensing strat-
egy that maximizes detection accuracy for events of inter-
est using available resources and data-driven approaches. In-
spired by those limitations, we ask a fundamental question:
whether state-of-the-art Recurrent Neural Networks can ob-
serve different series of data and communicate their hidden
states to collectively solve an objective in a distributed fash-
ion. We realize our answer by conducting a series of system-
atic analyses of a Communicating Recurrent Neural Network
architecture on varying time-steps, objective functions and
number of nodes. The experimental setup we employ mod-
els tasks synonymous with those in Wireless Sensor Net-
works. Our contributions show that Recurrent Neural Net-
works can communicate through their hidden states and we
achieve promising results.

Motivation
Resource Constrained Systems i.e. Wireless Sensor Net-
works and Embedded Systems are an integral part of hu-
man life owing to their successes in patient, environmental
and wildlife monitoring (Bell et al. 2014; Lazarescu 2013;
Dyo et al. 2012), among other application domains. Despite
their demonstrated value, these systems are plagued with
constraints on computing speed, memory size, energy effi-
ciency and communication bandwidth.

We consider Recurrent Neural Networks (RNNs) in solv-
ing the problem of distributed communication. Current re-
search has shown that RNNs can effectively model se-
quential data using their predictive power (Graves 2013;
Sutskever, Vinyals, and Le 2014).

Owing to the great success of RNNs in various applica-
tions, many works have been motivated to make RNN archi-
tectures better suited for their implementation, for instance;
Light RNN (Li et al. 2016) and Hierarchical Multiscale
RNN (Chung, Ahn, and Bengio 2016). Work by (Zhang
et al. 2016) introduces connecting architectures for RNNs.
We harness the power of state-of-the-art RNNs to provide a
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Figure 1: An illustration of event detection. Two (2) sets of
sensor signals A and B, A’ and B’ depicting temporally vary-
ing phenomena are shown. An alert signal is generated for
each set based on the occurrence of an episode of interest. In
this work, we demonstrate that distributed nodes observing
different signals characterized by dynamic phenomena can
communicate - a capability which enables event detection
applications in Resource Constrained Systems.

communicating neural network architecture that can collec-
tive solve tasks and objectives in distributed settings - a com-
mon characteristic of Resource Constrained Systems, with
an example shown in Figure 1.

Proposed Contribution
We propose a data-driven, decentralized approach to com-
munication that employs nodes observing unique data over
defined periods of time, and at each processing step sharing
their hidden states with neighbouring nodes to ultimately
learn the dependencies in the data and the observed func-
tion. To achieve this, we alter the architecture of traditional
RNNs on the lowest level of implementation possible, to en-
able communication through time (t) and space (number of
nodes) and empirically assess our results.

Our proposed architecture implements homologous and
unidirectional RNNs with shared weights implemented in
PyTorch. All layers are ReLu activated and parameters are
optimized using SGD (Rumelhart, Hinton, and Williams
1986) with a learning rate of 0.0005. The model uses the
default Adam (Kingma and Ba 2014) optimizer in PyTorch.
Communicating nodes have 8 latent states and are fully con-
nected.
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Figure 2: Nodes in a Communicating RNN architecture

Results
Our results are promising as we are able to demonstrate the
effectiveness of recurrent computation in a distributed sense
for our defined objectives. We make empirical analyses of
our Communicating RNN architecture for Objective func-
tions; Value (T1), Range (T2) and Compare (T3), with con-
vergence shown in Figure 3 and results in Figure 4.

yt =

{
1 if x1

t > p AND x2
t < q

0 otherwise. (T1)

yt =

 1 if (x1
t < a AND x2

t < a)
OR (x1

t > b AND x2
t > b)

0 otherwise.
(T2)

yt =

{
1 if x1

t > x2
t

0 otherwise. (T3)

where x1
t , x2

t are observations in different sequences, yt
is the network target, p, q are pre-defined threshold values,
and a, b are pre-defined range values.

Figure 3: Training losses for all tasks up to M=50000 sam-
ples

Conclusion
Our evaluations show that we can solve objective tasks in
a distributed fashion using a data-driven communication
paradigm that harnesses the power of RNNs. In addition to
our experimental results, we provide empirical basis for the
instatiation of Communicating RNN architectures. Our next
steps will investigate more complex tasks and consider the
impact of scale, both in space and time.

Figure 4: Scatter plots of targets and model predictions
showing color-valued dependencies between x1

t , x2
t and pre-

dictions.
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