
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Learning Flexible Latent
Representations via Encapsulated Variational Encoders

Wenjun Bai, Changqin Quan, Zhi-Wei Luo
Department of Computational Science

Kobe University, Japan
bwj@cs11.cs.kobe-u.ac.jp, quanchqin@gold.kobe-u.ac.jp, luo@gold.kobe-u.ac.jp,

Introduction
Representation learning – aims to capture certain aspects of
the observed data – has fuelled majority of downstream AI
applications. As an emerging technique, the usage of vari-
ational encoder 1 is a celebrated probabilistic approach to
learn efficient latent representations in a pure unsupervised
manner. However, based on the current structure of a varia-
tional encoder, learning of flexible latent representations is
still a challenge task. To this end, we propose a novel form of
variational encoder: encapsulated variational encoder (EVE)
that allows grouping of two encoders in single scaffold to
exploit their relations in representation learning.

Imposing certain constraints on this newly derived en-
capsulated variational encoder, e.g., the independence and
equivalence constraints, it is capable of learning diverged
and converged latent representations, respectively. We for-
mat the remaining article as follows. We chiefly render out
our proposed EVE in the following Technical Background
section. Then we demonstrate that via tuning a single hyper-
parameter in our proposed EVE, the diverged and converged
representations can be learned. Validated on MNIST and CI-
FAR10(4K) datasets, we show that these learned diverged
and converged latent representations elevate the discrimina-
tive and generative modelling performance respectively.

Learning flexible Latent Representations
Technical Background
Different to a conventional variational encoder (Kingma and
Welling 2013), in our proposed encapsulated variational en-
coders (EVE), we deliberately incorporate two variational
encoders, e.g., the base and scaffolding one qφb

(zb|x) and
qφs

(zs|x) to derive the analytic expression of our EVE as:
q((zb, zs)|x;φb, φs, α). To measure the relations between
two encoders, we adopt a discrepancy function with a pos-
itive defined hyper-parameter α, i.e., α ∈ <+ to quan-
tify the difference between two encoded latent representa-
tion as: Re(q(zb|x), q(zs|x)) = α · 1

L

∑L
l=1 exp{−||zlb −

zls||2}, where zlb and zls are Monte-Carlo sampled encoding
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1Here, we intentionly separate the usage of variational encoder
that can be used in dependent of commonly assumed decoder.

representations from two encoders respectively, i.e., zlb ∼
qφb

(zb|x) and zls ∼ qφs(zs|x). The graphical model presen-
tation of this derived EVE is depicted in Figure 1(a).

(a) (b) (c)

Figure 1: Graphical models of (a) the proposed encapsulated
variational encoders (EVE); (b) the semi-supervised EVE,
and (c) our derived encapsulated variational auto-encoder
(EVAE). In (c), solid arrows denote probabilistic decoders,
whereas dash arrows represent variational encoders.

Learning Converged Latent Representations
Armed with our proposed EVE, it is clear that the included
hyper-parameter α exert the direct control over learned la-
tent representations. In specific, as α → 0, it implies the
equivalence constraint on two encoders in EVE. With suf-
ficient training and a pre-defined small αs, latent represen-
tations from two encoders in EVE are learned to coincide
with each other. As a result, driving α → 0 allows our de-
rived EVE to learn converged latent representations.

These learned converged latent representations are
featured in production of regularised latent represen-
tations to improve the discriminative performance of
a semi-supervised model. To empirically validate this
hypothesis, we construct a semi-supervised EVE, i.e.,
qφb,φs

(zb, zs|x, y, α), to see how these converged represen-
tations benefit the model in performing a designated classi-
fication task on CIFAR-10(4k) dataset. The graphical model
presentation of this semi-supervised EVE can be found in
Figure 1(b).

Demonstrated in Table 1, it demonstrates a negative corre-
lation between the imposed α value and its induced discrimi-
native performance. With a diminished α, the discriminative
performance of our derived semi-supervised EVE achieved
competitive empirical performance even in the face of state-
of-the-art approaches.
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Model Test Error(%)
S3C (Goodfellow, Courville, and Bengio 2012) 28.1± 0.3

Ladder networks (Rasmus et al. 2015) 16.5± 0.3
VAT (Miyato et al. 2018) 24.1± 1.2

Semi-supervised EVAE (α = 1) 46.4± 0.2
Semi-supervised EVAE (α = 0.1) 21.7± 0.4

Semi-supervised EVAE (α = 0.01) 19.5± 0.2
Semi-supervised EVAE (α = 0.001) 18.2± 0.1

Benchmark:a supervised BNN 24.1± 0.2

Table 1: Test error rates obtained by various state-of-the-art
semi-supervised models and our proposed semi-supervised
EVE with varied α on CIFAR-10(4k) dataset. We ran each
model five times, then averaged the performance. S3C, VAT
and BNN refer to spike-and-slab sparse coding approach,
virtual adversarial training(with ε = 1.0&ζ = 1e−4) and a
Bayesian neural network respectively.

Learning Diverged Latent Representations

50

α

0.3

Figure 2: Qualitative results of EVAE with varied α on the
binarised MNIST. Besides the rendered visualisations on
generated pixel spaces (one that are positioned close to the α
scale), we also render out the visualisations on latent spaces
(ones that are positioned close to the α scale). The visu-
alisations that are based on the base encoder in EVAE are
grouped above the α scale, whereas these lower panel visu-
alisations are based on the scaffolding encoder in EVAE.

In opposite to the preceding case, when α → ∞, it im-
plies the independence constraint on two encoders in EVE
to enforce the production of diverged latent representa-
tions. These learned, statistically independent latent repre-
sentations are hypothesised to bring improvements on the
generative modelling performance of a generative model.

To construct this generative model, we merge our pro-
posed EVE with a corresponding probabilistic decoder, i.e.,
pθb,θs(x|zb, zs;α), and a simply factorised joint prior, i.e.,
pθb(zb) · pθs(zs), it allows the coinage of a new variant of

Variational Auto-Encoder: encapsulated Variational Auto-
Encoder (EVAE). The graphical model demonstration of
EVAE is depicted in Figure 1(c).

Reflected on Figure 2, with a smaller α(0.3), the genera-
tive modelling performance is largely constrained, rendering
high similarity between generated digits from two encoders
respectively. With a higher α(50), encoded latent representa-
tions from two encoders began to diverge, contributing to the
diversification of generated digits, i.e., varied writing styles
of the same digit.

Conclusion
In this abstract, we propose a novel form of variational en-
coder: encapsulated variational encoders(EVE). Rely on a
tuneable hyper-parameter α, this derived EVE is able to
learn converged and diverged latent representations of the
observed data. These learned flexible latent representations
can greatly improve the discriminative and generative mod-
elling performance.

Moving forward, to extend the current formation of EVE
to a non-parametric form, where the number of incorporated
variational encoders reaches infinity, leads to a new avenue
to explore in future studies.
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