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Abstract

In our research, we study the problem of learning a sequence
of supervised tasks. This is a long-standing challenge in ma-
chine learning. Our work relies on transfer of knowledge
between hypotheses learned with Support Vector Machines.
Transfer occurs in two directions: forward and backward. We
have proposed to selectively transfer forward support vec-
tor coefficients from previous hypotheses as upper-bounds on
support vector coefficients to be learned on a target task. We
also proposed a novel method for refining existing hypotheses
by transferring backward knowledge from a target hypothe-
sis learned recently. We have improved this method through a
hypothesis refinement approach that refines whilst encourag-
ing retention of knowledge. Our contribution is represented
in a long-term learning framework for binary classification
tasks received sequentially one at a time.

1 Introduction
Learning a sequence of tasks is a long-standing challenge
in machine learning. Paradigms such as learning to learn,
early lifelong learning and metalearning have acknowledged
this problem. Recently, Chen and Liu (2016) formalised life-
long machine learning as a process composed of a set of
related tasks that arrive sequentially and share knowledge.
They identified three core characteristics of these systems:
1) to learn new tasks better, supported by existing knowl-
edge; 2) to store knowledge continuously and incrementally
in a knowledge base; 3) to perform continuous learning.
A variety of research in transfer, hypothesis transfer, mul-
titask, meta and deep learning has explored the first char-
acteristic. Research in lifelong learning and related areas
have studied the second characteristic. The last property,
that should ideally pursue refinement of existing knowledge,
has only been explored recently (Ruvolo and Eaton 2013;
Fei, Wang, and Liu 2016). Continual learning with deep neu-
ral networks has focused on the challenge of learning new
tasks without forgetting existing knowledge (Yoon, Yang,
and others 2017). Nevertheless, the problem of refining ex-
isting knowledge has been scarcely explored.

In our research we study a framework for lifelong ma-
chine learning with these three properties. Our framework is
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Figure 1: The lifelong machine learning problem (top) and a
framework based on SVM (bottom).

built on top of Support Vector Machines (SVM) for classi-
fication tasks and some of its variants. The first character-
istic is tackled by a method that transfers selected knowl-
edge from a set of source hypotheses to a target task. Ex-
perimentally we demonstrated that our method speeds the
convergence rate of the target task. A second method pro-
posed to transfer backward, a novel ability of lifelong learn-
ing systems that aims to refine hypotheses from previous
tasks. These hypotheses are stored in a knowledge base. Ex-
periments with small real-world datasets denoted a potential
of this approach for continuously improving performance of
existing hypotheses. We have extended this method to sys-
tems composed of any number of tasks. This novel approach
encourages retention of knowledge while refining existing
hypotheses. Experiments with large synthetic and real-world
datasets demonstrated the feasibility of this approach. Figure
1 sketches a framework based on selective transfer forward
and backward. A brief explanation of the two main compo-
nents of this framework is provided in Sections 2 and 3.

2 Selective Transfer Forward
For transferring forward, we have proposed to use elements
of existing hypotheses fs ∈ S to aid learning of a target task
Tt. Support vectors from previous SVM hypotheses are se-
lected, and their coefficients aggregated and used to upper-
bound coefficients of support vectors to be learned as part
of a target hypothesis ft on Tt. This problem has been for-
malised as an SVM classification problem with a modified
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constraint (Benavides-Prado, Koh, and Riddle 2017):

max
α

F (α) =
n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjK(xi, xj)

s.t.

n∑
i=1

yiαi = 0, ∀i 0 ≤ αi ≤ C + ci, ci =
|F |
|S|

s∑
k=1

αk

(1)

Here, a coefficient αi for ft is upper-bounded by the con-
straint C + ci, which is composed of the original upper-
bound C and ci, an aggregation of α = {α1, . . . , αs} co-
efficients transferred from source support vectors xs ∈ F
that are similar to a target xi training example. F is the sub-
set of existing fs hypotheses related to the task Tt, and s is
the number of support vectors in that set that are similar to
xi. As a result, training examples on the target task that are
more closely resembled by support vectors in previous tasks
contribute more to the optimization problem.

3 Selective Transfer Backward
The problem of transferring backward aims to refine exist-
ing SVM hypotheses fs by exploiting knowledge collected
while transferring forward to learn a target ft. From the
method in Section 2, tuples of the form:

< (xs, ys, αs), (xt, yt, αt) > (2)
can be conformed. Here, (xs, ys, αs) corresponds to a sup-
port vector from a source hypothesis fs, and (xt, yt, αt) cor-
responds to a support vector from the target hypothesis ft
learned recently, which were involved in transfer in Eq. 1.
These tuples represent subspaces of shared knowledge be-
tween fs and ft, and can be potentially used for refining the
existing fs. We propose to approach this refinement by solv-
ing a modified SVM classification problem as follows:

max
α

F (α) = −
1

2
[(1− Γ)

l∑
i,j=1

αiαjyiyjK(xi, xj)

+Γ

l,2o∑
i,k=1

αiyiα
o
kK(xok, xi)]

s.t.
l∑
i=1

yiαi = 0,
l∑
i=1

αi ≥ ν, ∀i 0 ≤ αi ≤ 1/l

(3)

which is based on ν-SVM (Schölkopf et al. 2000). ν-SVM
for classification tasks is an alternative that considers a pa-
rameter ν that limits both the degree of compression of
an SVM hypothesis, acting as a lower bound on the frac-
tion of support vectors, and the training error, acting as
an upper bound on the fraction of margin errors. In our
method, refinement is controlled by controlling the training
error, whilst retention of knowledge is controlled by control-
ling the compression. The term

∑l
i,j=1 αiαjyiyjK(xi, xj)

describes the space of the current xs ∈ fs. The term∑l,2o
i,k=1 αiyiα

o
kK(xok, xi) describes the space of the fs

source hypothesis space intersected with the ft target hy-
pothesis space. Here, αo

k and xok, with 1 ≤ k ≤ 2o, are
extracted from o functions fo learned with one-class SVM.
Each of these functions uses as training examples the ele-
ments of a tuple represented as in Eq. 2. The parameter Γ,
set generally small, controls the contribution of the last term.
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Figure 2: Mean classification accuracy at each timestamp.
Error bars show 95% confidence intervals. t0 is the test per-
formance after half of the tasks have been learned.

4 Experimental Results
Our framework has been tested in synthetic and real-world
data. Figure 2 shows example results for learning systems
that learn hyperplanes. We evaluated our method (HRSVM)
and counterparts (ELLA and CL). In this example, synthetic
training and test sets for several hyperplanes were generated
using an existing method1. At each timestamp, a new hyper-
plane task is learned, existing hypotheses are refined and the
knowledge base is updated. A learning system should denote
better performance as the sequence of tasks progresses.

5 Future Work
Some avenues of research derived from our work are: 1) ex-
tension to multi-class settings for groups of tasks learned se-
quentially, 2) continual learning methods that pursue refine-
ment, 3) studying performance metrics for long-term learn-
ing systems, 4) investigating the impact of aspects such as
relatedness of tasks, number and quality of tasks.
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