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Abstract

Developing human-machine trust is a prerequisite for adop-
tion of machine learning systems in decision critical settings
(e.g healthcare and governance). Users develop appropriate
trust in these systems when they understand how the systems
make their decisions. Interpretability not only helps users un-
derstand what a system learns but also helps users contest
that system to align with their intuition. We propose an algo-
rithm, AVA: Aggregate Valuation of Antecedents, that gener-
ates a consensus feature attribution, retrieving local explana-
tions and capturing global patterns learned by a model. Our
empirical results show that AVA rivals current benchmarks.

Introduction
As machine learning systems become pervasive, human-
machine trust ought to become a potentially necessary ob-
jective. Currently, black-box systems beget powerful predic-
tive power to the end user but come with a burden of opacity,
creating space for distrust. Training interpretable models or
coupling explainable models with black-box models demys-
tifies the reasoning in these systems whilst maintaining re-
spectable levels of accuracy (Lipton 2018). Such transparent
machine learning systems that deliver post-hoc explanations
with predictions have been extensively studied in the current
machine learning literature.

We can explain a model’s output by looking at the training
examples most influential to model prediction for an unseen
test point (Koh and Liang 2017). We also can provide as-
sociations between input features and the target prediction,
resulting in a feature attribution: a ranking of which fea-
tures mattered most to the model. Feature attributions can
be found via gradient-based methods, which find the partial
derivative of the target with respect to every input feature
(Sundararajan, Taly, and Yan 2017), or perturbation-based
methods, which use parametric models to approximate the
decision boundary in a region of interest (Lundberg and Lee
2017). Current feature attribution approaches are impover-
ished, resulting in inconsistent attributions due to noisy gra-
dients estimates or unrepresentative regions of perturbation:
both of which decrease user trust.
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Aggregate Valuation of Antecedents
To maintain human-machine trust, we develop a new class of
explanations that aggregates feature attributions of the most
influential points to a given test point, exposing local expla-
nations and global patterns simultaneously. Our proposed
method, AVA: Aggregate Valuation of Antecedents, com-
bines the idea of approximating a black-box model of inter-
est to develop a feature attribution for a test point via (Lund-
berg and Lee 2017; Sundararajan, Taly, and Yan 2017) with a
local neighborhood influence measure proposed in (Koh and
Liang 2017). To first introduce notation, let x ∈ Rd be a dat-
apoint’s feature vector where the xi ∈ R is a specific feature
of that datapoint. Let D = {x(j)}Nj=1 represent the training
datapoints, where D ∈ Rd×N . Let f̂ be the learned predic-
tor we wish to explain. Using the approximation in (Koh and
Liang 2017), we define the influence weight, ρj ∈ R≥0, of
training point, x(j), on a test point, xtest, as follows.

ρj = Iup,loss(x
(j), xtest) =

d

dε
L(f̂ε,x(j) , xtest)

∣∣
ε=0

We then select the local neighborhood, Nk, of the k most
influential training points on xtest.

Nk(xtest,D) = argmax
N⊂D,|N |=k

∑
x(j)∈N

ρj

Using an attribution technique g, like (Lundberg and Lee
2017) or (Sundararajan, Taly, and Yan 2017), we obtain a
value attribution for each of the k points. Finally, once we
have the set of value attributions {g(x(j))}x(j)∈Nk

∈ G∗,
where g(x(j)) ∈ G, we can apply an aggregation scheme
A : G∗ 7→ G to obtain a consensus feature attribution. The
procedure is outlined in Algorithm 1.

Traditional Rank Aggregation
We leverage traditional aggregation techniques (i.e., Borda
Count and Markov Chains) to combine the top k attributions
into a consensus attribution. A natural class of such aggre-
gation mechanisms are based on centroids with respect to
some distance d : G × G 7→ R, so that:

A ({g(x)}x∈Nk
) ∈ argmin

g∈G

k∑
j=1

d(g, gj)
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Algorithm 1 AVA for a single test point, xtest

Input: test point xtest, training data D, learnt predictor f̂ ,
feature attribution technique g, aggregation technique A
Find the top k most influential training points w.r.t. f̂ us-
ing influence functions: Nk(xtest,D)
for data point x ∈ Nk do

Compute the feature attribution g(x) of a point x
end for
Output: Consensus attribution usingA:A ({g(x)}x∈Nk

)

The simplest examples of distances include: (a) `2 distance
with real-valued attributions where G = Rd, and (b) the
Kendall-tau distance with rank-valued attributions where
G = Sd, the set of permutations over d elements (in this
case, features); the resulting aggregation mechanism via
computing the centroid in this case is called the Kemeny-
Young rule. We could obtain such rank-valued attributions
by taking any quantitative vector-valued attributions, rank-
ing the features according to these values, and thus obtaining
a rank-valued attribution. For such rank valued attributions,
any aggregation mechanism falls under the rank aggregation
problem in social choice, for which many practical “voting
rules” exist. In fact, the aforementioned Kemeny-Young rule
is computationally intractable with O(n!) complexity due to
solving an optimization problem over the set of permutations
over n elements. Accordingly, we leverage other rank aggre-
gation schemes that are more computationally practical.

• Borda Count (Narodytska and Walsh 2014): This tech-
nique gives a weight to each position in the rank. The
feature with the largest sum across all ranks is the most
important in the aggregate rank.

• Markov Chains (Negahban, Oh, and Shah 2012): This
technique uses Markov Chains to consolidate pair-wise
comparisons.

Experiments
We present experiments to evaluate the consensus attribution
given by AVA on tabular datasets. To explain an individual
prediction via value attribution, we compare AVA with the
attribution given by the feature attribution technique itself
(SHAP or Integrated Gradients). We can quantify the faith-
fulness of a feature attribution through its recall on a gold
set of m important features obtained from an interpretable
model like in (Ribeiro, Singh, and Guestrin 2016). To obtain
a gold set, we use a decision tree classifier that we prune to
a maximum of m features, where m is picked by cross vali-
dation for each dataset to maximize accuracy of the known-
interpretable classifier. As a sanity check, we also compare
against a random procedure that randomly picks m features
as an explanation.

We had two degrees of freedom in our experimentation:
the explanation technique g and the aggregation technique
A. We selected two attribution techniques (SHAP and In-
tegrated Gradients) and two aggregation techniques (Borda
Count and Markov Chains) to fold into AVA. We denote

AVA aggregated with Borda Count as AVA-B and AVA ag-
gregated with Markov Chains as AVA-M; the third letter S
or I denotes which attribution technique was used SHAP or
Integrated Gradients, respectively. In Figure 1(a), we report
gold set recall for the Adult dataset over different attribu-
tion schemes to explain the same three layered MLP with
the stated activation function trained with ADAM and do the
same for the Titanic dataset in Figure 1(b). Evidently, AVA
outperforms current benchmarks.

(a) (b)

Figure 1: Gold set recall with traditional rank aggregation
schemes: (a) Adult; (b) Titanic

Conclusion
We introduced AVA, Aggregate Valuation of Antecedents, as
a new feature attribution technique. By calculating the top k
influences for a given test point, we aggregate those influ-
ences’ feature attributions to find a consensus feature attri-
bution. We have shown that AVA’s consensus attribution out-
performs current attribution benchmarks on tabular datasets.
In future work, we hope to realize a medical use case of
AVA, develop a more robust aggregation step that builds on
counterfactual intuition, and adapt AVA for unstructured do-
mains (i.e., images and natural language): all of which will
continue to build human-machine trust via interpretability.
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