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Abstract
Transfer-learning and meta-learning are two effective meth-
ods to apply knowledge learned from large data sources to
new tasks. In few-class, few-shot target task settings (i.e.
when there are only a few classes and training examples avail-
able in the target task), meta-learning approaches that opti-
mize for future task learning have outperformed the typical
transfer approach of initializing model weights from a pre-
trained starting point. But as we experimentally show, meta-
learning algorithms that work well in the few-class setting
do not generalize well in many-shot and many-class cases. In
this paper, we propose a joint training approach that combines
both transfer-learning and meta-learning. Benefiting from the
advantages of each, our method obtains improved general-
ization performance on unseen target tasks in both few- and
many-class and few- and many-shot scenarios.

Introduction
Current deep learning algorithms require a very large
amount of data to learn decent task-specific models, and
acquiring enough labeled data is often expensive and la-
borious. Moreover, in many mission critical applications,
such as autonomous vehicles and drones, an agent needs to
adapt rapidly to unseen environments. Humans are able to
learn new skills and concepts rapidly by leveraging knowl-
edge learned earlier; therefore, we aim to enable the artifi-
cial agents to do the same. Transfer learning transfers the
knowledge obtained from one domain with a large amount
of labeled data to other domains with less labeled data (Pan
and Yang 2010). It achieves this by copying the initial fea-
ture extraction layers, and fine-tuning the resulting model on
the target task (Yosinski et al. 2014). However, this method
is still data hungry because gradient-based optimization al-
gorithms need many iterations over numerous examples to
adapt the models for new tasks (Ravi and Larochelle 2016).
On the other hand, meta-learning is a class of machine learn-
ing algorithms concerned with the ability of learning process
itself. Introduced by (Schmidhuber 1987), meta-learning
aims to train the model in task space rather than instance
space. While transfer learning methods train a base model
to use as a transfer source by optimizing a single mono-
lithic task, meta-learning algorithms learn their base models
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by sampling many different smaller tasks from a large data
source. As a result, one might expect that the meta-learned
model is capable of generalizing well to new unseen tasks
because of task-agnostic way of training.

Shortcomings of meta-learning algorithms. As we
show in the experiments below, models trained using meta-
learning perform worse than transfer learning in the follow-
ing two scenarios: 1. When there are many training examples
available for each class in the target task (here we would like
the artificial agent to continue improving its model perfor-
mance as more data becomes available); and 2. When there
are many different classes in the target task.

The main contribution of this paper is a joint “meta-
transfer” learning method that performs well for target tasks
of both few and many shots/classes. Our method performs
better than both transfer- and meta-learning baselines on all
target task sizes we evaluate.

Meta-Transfer Learning (MTL)
In order to overcome the two issues mentioned earlier,
we propose a new training algorithm, which inherits ad-
vantages of both meta-learning and transfer learning. This
joint training method employs two loss functions: 1) task-
specific (transfer learning) 2) task-agnostic (meta-learning).
The task-specific loss, L(x,y)(θ), is defined over the entire
base model’s training dataset. The task-agnostic loss, Lτ (θ),
on the other hand, is a meta-learning loss defined over a dis-
tribution of tasks (e.g. 5-ways classification tasks). Two gra-
dient updates are computed independently from these two
loss functions, and the model is updated using the weighted
average of these two update vectors (see Algorithm 1). The
tasks in meta-learning are sampled from a distribution p(τ),
while all instances in the sampled tasks are used for the
task-specific optimization. For adaptation to a new unseen
task, regular stochastic gradient descent will be used. For
the meta-learner, we evaluate our method using both Model
Agnostic Meta-learning (MAML (Finn, Abbeel, and Levine
2017)) and its first order variant, Reptile (Nichol, Achiam,
and Schulman 2018). The reason that we use this class of
meta-learning algorithms is that as opposed to Matching
Networks (Vinyals et al. 2016) and its variant (Snell, Swer-
sky, and Zemel 2017), they are model agnostic, and can be
directly applied to any model which is trained with a gra-
dient descent procedure. The proposed method is similar to
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Table 1: Accuracy results on miniImageNet dataset.

Task Transfer Learning Prototypical Reptile Reptile MTL MAML MAML MTL

5-ways
1 Shot 37.44 49.42 49.16 51.04 48.70 50.99
5 Shots 53.28 68.20 65.99 69.58 63.11 67.88

100 Shots 90.23 61.13 83.75 96.56 82.53 92.44

20-ways
1 Shot 15.06 21.54 20.29 22.27 20.50 22.34
5 Shots 27.33 34.68 31.46 36.45 31.50 35.95

100 Shots 73.56 56.76 68.59 74.00 68.55 74.87

35-ways
1 Shot 10.49 10.67 9.85 13.60 9.61 14.11
5 Shots 20.04 17.53 16.46 21.59 16.01 21.85

100 Shots 61.72 38.13 51.09 68.10 50.21 66.34

Gradient Agreement (Eshratifar, Eigen, and Pedram 2018)
in a sense that it pushes the model parameters in a direction
that the distribution of tasks have agreement with the single
specific task of training over the whole classes.
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Figure 1: Meta-transfer learning model setup for miniIma-
geNet dataset

Algorithm 1 Meta-Transfer Learning Algorithm

1: Initialize model parameters, θ
2: for iteration = 1,2,... do
3: Sample a batch of tasks τi ∼ p(τ )
4: for all τi do
5: Split the examples of the task into k sub-batches
6: θi = θ - αinner∇Lτi(fθ) for k steps
7: θmetalearner = θ - αouter

∑
i ∇Lτi(fθi) (MAML)

8: θmetalearner = θ + αouter
∑
i(θi - θ) (Reptile)

9: θdiscriminator = θ - αd∇L(x,y)

10: θ = β θmetalearner + (1− β) θdiscriminator
11: return θ

Performance Evaluations
The proposed model is evaluated on miniImageNet (Vinyals
et al. 2016) dataset, split into 64 training classes and 36 test
classes as unseen tasks. The architecture of the model is
shown in Figure 1 and the results are demonstrated in Ta-
ble 1. The base model for transfer learning is trained on all
64 training classes.

Note that for many-classes (35-ways) tasks, the transfer
learning baseline outperforms previous meta-learning algo-
rithms, while in few-classes problems, the result is reversed:
meta-learning beats transfer learning. Our proposed method,

MTL, outperforms both these algorithms in all scenarios by
improving the weaknesses of few-shot learning algorithms
in generalizing to many-shot and many-classes problems.

Conclusion and Future Work
A single model that is adaptable to unseen tasks is a crucial
component in artificial intelligence. In this work, we pre-
sented a method to extend the capability of few-shot learning
algorithms to many-shot and many-classes learning prob-
lems, by integrating them with transfer learning model. The
next step is to use this approach on a larger dataset and
deeper model, to see whether meta-learning is still outper-
forming transfer learning or not.
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