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Introduction
Learning temporal abstractions which are partial solutions to
a task and could be reused for solving other tasks is an ingre-
dient that can help agents to plan and learn efficiently. In this
work, we tackle this problem in the options framework (Sut-
ton, Precup, and Singh 1999; Precup 2000). We aim to learn
options which are specialized in different state space regions
by proposing a notion of interest functions. We build on the
option-critic framework (Bacon, Harb, and Precup 2017) to
derive policy gradient theorems for interest functions lead-
ing to a new interest-option-critic architecture.

Preliminaries
A finite, discrete-time Markov Decision Processes (MDP)
(Sutton and Barto 1998) is a tuple 〈S,A, r, P, γ〉, where S
is the set of states, A is the set of actions, r : S × A → R
is the reward function, P is the state-transition probability,
and γ ∈ [0, 1) is the discount factor. At each time step,
the learning agent perceives a state St ∈ S, takes an ac-
tion At ∈ A drawn from a policy, π : S × A −→ [0, 1],
and with probability P (St+1|St, At), enters into next state
St+1, receiving a numerical reward Rt+1 from the environ-
ment. The value function of policy π is defined as: Vπ(s) =
Eπ[

∑∞
t=0 γ

tRt+1|S0 = s] and its action-value function as
Qπ(s, a) = Eπ[

∑∞
t=0 γ

tRt+1|S0 = s,A0 = a].
A Markovian option (Sutton, Precup, and Singh 1999)

ω ∈ Ω is composed of an intra-option policy πω , a ter-
mination condition βω : S → [0, 1], and an initiation set
Iω ⊆ S. In the call-and-return option execution model; the
agent chooses an option ω according to the policy over op-
tions πΩ, follows the option policy πω , until option termina-
tion governed by βω , at which point this process is repeated.
The option-value function is defined as:

QΩ(s, ω) =
∑
a

πω,θ(a|s)QU (s, ω, a)

where QU : S × Ω × A −→ R is the value of executing an
action in the context of a state-option pair:

QU (s, ω, a) = r(s, a) + γ
∑
s′

P (s′|s, a)U(ω, s′)
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where U is the option-value function upon arrival in a state:

U(ω, s′) = (1− βω,ν(s′))QΩ(s′, ω) + βω,ν(s′)VΩ(s′)

Learning Options with Interest Functions
Recent research has demonstrated that options can be
learned automatically and end-to-end for a given task (Ba-
con, Harb, and Precup 2017; Bacon 2018). Unfortunately,
this can result in degenerate solutions, with either one option
being used for the entire task, or option duration collapsing
to single time steps. This type of degenerate solution is po-
tentially due to a simplifying assumption used in the option-
critic (Bacon, Harb, and Precup 2017): that all options are
available in all states. This assumption is not present in the
original options paper, where an option is limited to act in
a subset of states. However, sets are inconvenient for learn-
ing, as they do not lend themselves to gradient-based adjust-
ments. In order to learn options that represent specialized
and meaningful skills for lifelong learning, we revisit the
idea of an initiation set, used in the options framework, but
through a formulation that is more amenable to learning.

We introduce the notion of interest functions Iω : S →
IR. The idea is inspired by human visual attention: while
we engage in a task, each skill employed is specialized in
attending to only certain states. For example, a skill such as
‘stop if the traffic light is red’ is only applicable in states in
which a traffic light is present.

Note that we will interpret Iω(s) as an indicator of the ex-
tent to which an option is applicable in a state. Initiation set
can then be implemented through their characteristic func-
tion, which is a special type of interest function with binary
output. However, in general it is more convenient to con-
sider differentiable interest functions, Iω,z parameterized by
a parameter vector z, in order to be able to adjust them with
gradients.

The state-value function over options that have interest
functions is defined as:

VΩ(s) =
∑
ω

πIω,z (ω|s)QΩ,θ(s, ω) (1)

whereQΩ,θ is the option-value function parameterized by θ,
and the probability of option ω being sampled in in state s is
defined as:

πIω,z (ω|s) = Iω,z(s)πΩ(ω|s)
/∑

ω

Iω,z(s)πΩ(ω|s) (2)
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The agent initially would consider that all options are avail-
able everywhere. As learning progresses, we would like the
emerging options to be specialized over different state space
regions. We can derive the interest function gradient, obtain-
ing the following result:
Theorem 1. Given a set of Markov options with stochas-
tic, differentiable interest functions Iω,z , the gradient of the
expected discounted return with respect to z at (s, ω) is:∑

s′,ω′

µ̂Ω(s′, ω′|s, ω)βω,ν(s′)
∂πIω,z (ω

′|s′)
∂z

QΩ(s′, ω′)

where µ̂Ω(s′, ω′|s, ω) is the discounted weighting of the
state-option pairs along trajectories starting from (s, ω)
sampled from the sampling distribution determined by Iω,z .

We can then derive the policy gradients for intra-option
policies and termination functions which are assumed to be
stochastic and differentiable in θ and ν respectively. The
proofs are in the appendix1. This gives us the following two
results in Theorem 2 and 3.
Theorem 2. Given a set of Markov options with stochas-
tic, differentiable intra-option policies πω,θ, the gradient of
the expected discounted return with respect to θ and initial
condition (s0, ω0) is:∑

s,ω

µ̂Ω(s, ω|s0, ω0)
∑
a

∂πω,θ(a|s)
∂θ

QU (s, ω, a)

where µ̂Ω(s, ω|s0, ω0) is the discounted weighting of the
state-option pairs along trajectories starting from (s0, ω0)
sampled from the new option sampling distribution deter-
mined by Iω,z(s).
Theorem 3. Given a set of Markov options with stochas-
tic, differentiable termination functions βω,ν , the gradient of
the expected discounted return with respect to ν and initial
condition (s0, ω0) is:

−
∑
s′,ω

µ̂Ω(s′, ω|s0, ω0)
∑
a

∂βω,ν(s′)

∂ν
AΩ(s′, ω)

where µ̂Ω(s, ω|s0, ω0) is the discounted weighting of the
state-option pairs along trajectories starting from (s0, ω0)
sampled from the new option sampling distribution deter-
mined by Iω,z(s).

Here AΩ(s′, ω) is the advantage function over options.
Note that these two results remain similar to the ones in
(Bacon, Harb, and Precup 2017) with the key difference
in the discounted weighting of state-option pairs now sam-
pled from the new option sampling distribution determined
by Iω,z(s). This is natural as the introduction of interest-
function should only impact the choice of options in each
state.

An implementation of the interest-option-critic in the tab-
ular setting using intra-option Q-learning is shown in Al-
gorithm 1. The algorithm is also applicable to function ap-
proximation. Experiments are in progress. After empirical

1https://sites.google.com/view/learninterest

evidence in simulated environments, we aim to extend the
work to the robotics domain to demonstrate its efficacy in a
real world scenario.

Algorithm 1 Interest-Option-Critic with tabular intra-option
Q-learning
s←− s0

Initialize policy over options πΩ

Initialize Iω,z parameterized by z such that all options are
everywhere at the start
πIω,z (ω|s) = Iω,z(s)πΩ(ω|s)

/∑
ω Iω,z(s)πΩ(ω|s)

Choose ω according to πIω,z
repeat

Choose a according to option-policy πω,θ(a|s)
Take action a in s, observe s′, r

1. Options evaluation:
δ ← r −QU (s, ω, a)
if s′ is non terminal then
δ ← δ + γ(1 − βω,ν(s′))QΩ(s′, ω) +
γβω,ν(s′) maxω′ QΩ(s′, ω′)

end if
QU (s, ω, a)← QU (s, ω, a) + αδ

2. Options improvement:
θ ← θ + αθ

∂ log πω,θ(a|s)
∂θ QU (s, ω, a)

ν ← ν − αν ∂βω,ν(s′)
∂ν (QΩ(s′, ω)− VΩ(s′))

z ← z + αzβω,ν(s′)
∂πIω,z (ω′|s′)

∂z QΩ(s′, ω′)

if βω,ν terminates in s’ then
Choose new ω according to πIω,z

end if
until s′ is a terminal state

Interest functions enable end-to-end autonomous con-
struction of options that are specialized in different regions.
Emergence of such options would enable generalization over
multiple tasks requiring similar options, and facilitate life-
long and hierarchical learning.
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