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Introduction
Neutrinos are tiny sub-atomic particles that carry no electri-
cal charge and interact with matter only through the weak
nuclear force, which makes them extremely hard to detect.
There are three distinct types of neutrinos, called “flavors”:
(νe, νµ, ντ ), each of which can “oscillate” into the other with
a detectable probability. Many experiments (Abe and others
2015) (Adamson and others 2016) have been set-up to mea-
sure the parameters governing the oscillation probabilities
accurately, with implications for the fundamental structure
of the universe. Very often, this involves inferences from tiny
samples of data which have complicated dependencies on
multiple oscillation parameters simultaneously. This is typi-
cally carried out using the unified approach of Feldman and
Cousins (Feldman and Cousins 1998) which is very com-
putationally expensive, on the order of tens of millions of
CPU hours. In this work, we propose an iterative method us-
ing Gaussian Process to efficiently find a confidence contour
for the oscillation parameters and show that it produces the
same results at a fraction of the computation cost. To our
knowledge, the most similar existing work is using a Gaus-
sian Process surrogate in the approximate Bayesian compu-
tation framework (Meeds and Welling 2014) but it may not
achieve desired frequentist coverage.

Oscillation Parameter Inference
The probability of νµ → νe oscillations, P (νµ → νe) is de-
termined by θ = (∆m2

32, sin
2 θ23, δCP ). To infer θ, a typical

neutrino oscillation experiment sends a beam of νµ neutri-
nos into a detector and observes a handful of oscillated νe
neutrinos from their interactions with the detector. The ob-
served neutrinos are binned by their energy as the oscilla-
tion probability is a function of energy. For each energy bin
i ∈ I , there is an observed neutrino count xi and an expected
count λi, which naturally gives rise to a Poisson distribution.
However, for a given θ, the expectation λ is also influenced
by the underlying model of the experiment, such as the beam
configuration and the physics of neutrino interactions. Each
of these have their own associated uncertainties, δ. Since the
relationship between λ and (θ, δ) is not available analyti-
cally, λ is deduced from Monte Carlo. Denote the implicit
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mapping between λ and (θ, δ) by v. The log-likelihood of
(θ, δ) is given by:

logL(θ, δ) =
∑
i∈I

logPois(xi; v(θ, δ)i)−
1

2
δ2 (1)

where − 1
2δ

2 is a penalty term for systematic error. The best
fit parameters (θ̂, δ̂) can be obtained by maximizing the log-
likelihood but a confidence contour is also needed to quan-
tify the statistical uncertainty in θ̂. This can be done by an
inverted likelihood ratio test (LRT) as a particular value θ0
should only be included in the 1 − α confidence contour if
we fail to reject the null θ = θ0 at the α level. However, the
asymptotic χ2 distribution of the likelihood ratio statistic D
is unreliable when the sample size of observed neutrinos is
small. Moreover, the distribution of D can vary drastically
as a function of θ due to the complexity of v. Therefore, for
a given θ0, Monte Carlo experiments are used to simulate
the LRT critical value c(θ0). Since the parameter space is
bounded, this is done in a grid for a large number of θ val-
ues. Known as the Feldman-Cousins method in high energy
physics, this LRT based approach has high statistical power
by the Neyman-Pearson lemma but exhausting the grid is
computationally inefficient.

Gaussian Process Iterative Method
With applications to hyper-parameter tuning (Snoek,
Larochelle, and Adams 2012), Bayesian optimization can be
used to find the optimum of any black-box function f that is
expensive to evaluate. Bayesian optimization is an iterative
procedure. In each iteration, a number of points are evalu-
ated to update an approximation of f . Then based on the
approximation, the points in the next iteration are proposed
by an acquisition function a. The approximation model is
usually a zero-mean Gaussian process GP(0, κ(·, ·)). A GP
assumes any finite collection of points to be jointly Normal
with covariance matrix Σ, which is parametrized by a kernel
function κ that defines pairwise covariance. Given observed
data, a GP model can be fitted by optimizing parameters
of the kernel. The acquisition function a aims to balance
between “exploration,” reducing approximation uncertainty,
and “exploitation,” reaching the optimum.
In our context, the expensive black-box function is the map-
ping of LRT critical values c(θ). What we want to find is
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the confidence contour, the set of points where the observed
likelihood ratio statistic DX is equal to the critical value.
The acquisition function is given by

a(θ) = | ĉ(θ)−DX

σĉ(θ)
|−1 (2)

where ĉ(θ) is the GP approximated critical value at θ and
σĉ(θ) is the GP standard deviation at θ. Iteratively, the GP
model will seek those points for which it is unsure about be-
ing within the confidence contour. The other points would be
either included or rejected with some certainty. Figure 1 il-
lustrates one iteration of the proposed method. With more it-
erations, the certainty will increase so that the approximated
confidence contour converges to the one produced by a full
grid search.

Figure 1: Top (from left to right): percentile of acquisition
function and points explored on the grid. Bottom: approxi-
mated critical value and confidence contour at the 68% level.

Results
We set up a toy experiment with an oscillated νe signal
binned uniformly between 0.5 − 4.5 GeV and no back-
grounds. Toy uncertainties for the νµ beam configuration
and the νe interaction probability are included in the nui-
sance parameters, δ. More details are given in the supple-
ment. With ∆m2

32 treated as a nuisance parameter as well,
the confidence contour of interest is of sin2 θ23, δCP in the
range of (0, 1)× (0, 2π).
400 points on an evenly-spaced grid are used to find the
“true” confidence contour using standard Feldman-Cousins
method, with 1000 Monte Carlo experiments performed at
each point. For the proposed method, 20 points are proposed
in each iteration. For evaluation, we compare the proposed
method and standard Feldman-Cousins method by calculat-
ing the percentage of overlap between the respective confi-

dence contours (set of points)

1− 1

n

n∑
i=1

(IFC(θi)− IGP (θi)) (3)

where IFC and IGP are indicator functions for whether θi is
included in the confidence contour. The same comparison is
performed with typical post-hoc smoothing (of confidence
contour) as well. As shown in Figure 2, on 200 simulated
data sets, the proposed method produces the same results as
standard Feldman-Cousins method using 30% of the compu-
tation budget. In high energy physics and other fields, there
are a wide range of similar inference problems and the pro-
posed method can be applied to them as well.

Figure 2: Distributions of contour overlap when different
percentages of points on the grid are used. The red horizon-
tal lines indicate the median.
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