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Abstract

We consider the problem of mobilizing community effort to
reposition indiscriminantly parked shared bikes in urban en-
vironments through crowdsourcing. We propose an ethically
aligned incentive optimization approach WSLS which maxi-
mizes the rate of success for bike repositioning while mini-
mizing cost and prioritizing users’ wellbeing. Realistic sim-
ulations based on a dataset from Singapore demonstrate that
WSLS significantly outperforms existing approaches.

Introduction
Today’s biking sharing systems (e.g. ofo) allow users to pick
up and drop off bikes at any location, not limited to park-
ing zones (Figure 1(a)). This flexibility has led to many
cases of indiscriminant parking (Figure 1(b)) despite appeals
to users to park shared bikes at designated parking zones
(Figure 1(c)). This has resulted inconvenience to other road
users. Existing approaches incentivizing users to change
their travel plans to park bikes into parking zones (Singla
et al. 2015) are not suitable for this problem.

Figure 1: Examples of bike parking problems in Singapore.

To address this problem, we develop an incentive opti-
mization approach to mobilize crowdsourcing users to repo-
sition indiscriminately parked bikes into parking zones. We
propose a revised multi-dimensional and multiple choice
Knapsack formalization of this problem, and an efficient
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solution to maximize the expected number of bikes repo-
sitioned while minimizing cost and number of queries.

Revised MMKP Problem Formulation
Assuming that within a bounded area, there are NS shared
bike parking zones. Let there be a total of NB indiscrim-
inately parked bikes {b1, b2, ..., bNB

}. The objective is to
maximize the number of bikes repositioned into parking
zones while staying within the resource constraints.

At any given time, there can be NU users, each having
his own base price for repositioning a bike. A user’s base
price may vary at different time of a day and is related to
the distance of travel needed to reposition a bike. There-
fore, we divide each day into 12 time slots of 2 hours each
{h1, h2, ..., h12}, and consider moving distance d in mul-
tiples of a fixed unit distance dunit (e.g. 50m). There are
up to L levels of movement distance {d1, d2, ..., dL}, and
dl = l · dunit. Distances longer than dL are categorized as
dL. Denote user i’s base price for a given distance dl and
time slot ht as ci(dl, ht). We assume that the range of possi-
ble values for base prices is ci(dl, ht) ∈ [cmin, cmax], where
cmax > cmin > 0. Each bikes is treated as a task, τj , which
needs to be delegated to a user. Each τj contains informa-
tion regarding bike id b, the destination parking zone z, and
distance separating the two dl, τj = {b, z, dl}. We aim to
reposition each bike to its nearest available parking zone.

One obvious resource constraint is the total budget, B.
In addition, we introduce another resource constraint - total
number of queries, PT , for all tasks. One query equals to
one offer presented to one user. The main reason to intro-
duce PT is to prevent the algorithm from spamming users
with lower price queries which negatively impacts user ex-
perience. By incorporating this constraint, we follow the eth-
ically aligned design guidelines to prioritize users’ wellbe-
ing while attempting to achieve system objectives (Yu et
al. 2018). We formulate our problem following the Multi-
dimensional Multiple Choice Knapsack (MMKP) model
(Hifi, Michrafy, and Sbihi 2004). We treat the decisions
about each task τj as an item-set Ij which contains |Ij |
items formed by available choices of the posted-price of-
fer p ∈ [cmin, cmax], the time slot the task is scheduled for
processing h, and expected number of queries to be sent to
nearby users pt = d 1

F (dl,h,p)
e, where F (dl, h, p) is the cu-

mulative probability distribution function of how likely an
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offer p will be accepted given dl and h, which is to be learnt.
The original objective of MMKP is to pick exactly one

item from each item-set to maximize the overall value of
picked items. Since there may not always be enough re-
sources left to pick one item from each item-set, we relax
this constraint in our formulation to picking at most one item
from each item-set.

The WSLS Approach
As described in our revised MMKP model, the joint decision
about each task τj is an item in the item-set Ij with |Ij | items.
The |Ij | items can be viewed as the arms in an |Ij |-armed
bandit. Based on the framework in (Hifi, Michrafy, and Sbihi
2004), we propose a Weight Sensitive Local Search (WSLS)
approach. It firstly ranks all tasks in ascending order of their
dl value. We set the time window tw = 2, meaning that a task
can be processed in either the current time slot ht, or the next
ht+1. Then, for each task, WSLS pulls the arms in the bandit
to determine the joint decision tuple 〈p, h, pt〉.

Since all successfully repositioned bikes yield the same
utility, WSLS focuses on finding items consuming less re-
sources. It contains three steps: 1) finding an initial solu-
tion selecting items which result in the minimal sum of
resource consumption ratios under both B and PT (i.e.
argmin

〈p,h,pt〉∈Ij

{(
p
B + pt

PT

)
|h
}

for every task τj); 2) adjusting

the choices of items based on resource violations to find a
feasible solution (some selected item tuples may need to set
to 〈0, 0, 0〉); and 3) swapping items through local search by
eliminating items ‘dominated’ by others (Kellerer, Pferschy,
and Pisinger 2004) to improve solution optimality.

Experimental Evaluation
In order to evaluate the proposed WSLS approach, we built
a simulator based on a real-world dataset from Singapore
containing location information of designated parking zones
(https://data.gov.sg/dataset/lta-parking-standards-zone).
The simulator also generates the locations of the bikes and
the start locations for the user agents to create an evaluation
environment.

We select four approaches as baselines for comparison
with WSLS in the experiments: 1) Random, which randomly
adjusts offer prices to query nearby users until someone ac-
cepts the task; 2) Greedy, which follows the greedy approach
in (Auer, Cesa-Bianchi, and Fischer 2002) to adjust the of-
fer prices; 3) Upper Confidence Bound (UCB), which fol-
lows the UCB approach in (Auer, Cesa-Bianchi, and Fischer
2002) to adjust the offer prices; and 4) Knapsack-based up-
per confidence bound exploration and exploitation (KUBE),
which follows the approach in (Tran-Thanh et al. 2012) to
adjust the offer prices. We set NB = 10, 000 and vary NU

from 5,000 to 15,000. Under each configuration, the simu-
lation was run for 10,000 epoches. Prices are represented in
the form of points in the simulation, and a user agent only
accepts an offer if it is equal to or higher than its base price.

Figure 2 shows the results. The average percentage of
bikes repositioned is averaged over all configurations and
epoches, whereas the other two metrics are averaged over

all configurations, epoches and bikes. It can be observed
that WSLS achieves the highest percentage of bikes repo-
sitioned, beating the best performing baseline approach,
KUBE, by 34%. It achieves the second lowest average offer
price among all approaches, 17% higher than that of Greedy.
However, WSLS only needs to query half as many users as
Greedy does. Overall, WSLS achieves the most desirable
trade-off among the three evaluation metrics.
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Figure 2: Experimental Results.

Conclusions and Future Work
In this paper, we proposed WSLS which jointly optimizes
the offer price, the scheduled execution time, and the task
query rounds in order to efficiently mobile community effort
to reposition indiscriminantly parked shared bikes through
crowdsourcing. We are developing a mobile app based on
this approach, and working with community organizations
in order to study how such a platform can be used to engage
senior citizens to participate for the purpose of productive
aging while achieving our original objective.
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