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Abstract

We propose a Multi-task learning approach for Abstractive
Text Summarization (MATS), motivated by the fact that hu-
mans have no difficulty performing such task because they
have the capabilities of multiple domains. Specifically, MATS
consists of three components: (i) a text categorization model
that learns rich category-specific text representations using
a bi-LSTM encoder; (ii) a syntax labeling model that learns
to improve the syntax-aware LSTM decoder; and (iii) an ab-
stractive text summarization model that shares its encoder and
decoder with the text categorization and the syntax labeling
tasks, respectively. In particular, the abstractive text summa-
rization model enjoys significant benefit from the additional
text categorization and syntax knowledge. Our experimental
results show that MATS outperforms the competitors.1

Introduction
Abstractive text summarization aims to generate condensed
and concise summaries that retain the salient information of
a source text. The abstracted summaries potentially contain
new phrases and sentences that don’t appear in the source
text. Inspired by the recent success of sequence-to-sequence
(seq2seq) models in statistical machine translation (Bah-
danau, Cho, and Bengio 2015), most abstractive summariza-
tion systems employ a seq2seq framework to generate sum-
maries (Nallapati et al. 2016; See, Liu, and Manning 2017).

Despite progress, significant generation and syntax con-
forming challenges remain: (1) writing styles and words
in different categories can significantly vary. But existing
methods apply a uniform model to generate summaries for
the source texts in different categories, which tend to gener-
ate trivial and generic summaries which easily under repre-
sent salient aspects of the source text. (2) syntactic informa-
tion plays a crucial role in sentence generation, and enforc-
ing syntactic conformance addresses issues like incomplete
sentences. Despite its usefulness, the exploitation of syntax
has received little attention in abstractive summarization.

Here we consider an integration of these aforementioned
approaches to the noted challenges, and show measurable
progress in how they improve abstractive summarization.
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Our framework consolidates these improvements by ex-
ploiting the recent successes of the encoder-decoder frame-
work to generate abstractive summaries. While this standard
framework is common in related approaches, we addition-
ally propose extended regularizations using multi-task learn-
ing. Our encoder and decoder are regularized with the co-
training required to perform additional text categorization
and syntax annotation task, respectively. This co-training is
not intended to maximize performance on these auxiliary
tasks, but rather to compensate for the missing regularization
requirement of text summarization in the standard frame-
work. We also employ reinforcement learning to maximize
long-term rewards of generation. Overall, the integration of
multi-task learning approach in the framework provides sig-
nificant improvements in abstractive summarization.

Methodology
Assume each input article X = {x1, x2, ..., xn} has corre-
sponding reference summary Y = {y1, y2, ..., yk} and cate-
gory label L, where n and k denote the length of input arti-
cle and reference summary, respectively. Given an input arti-
cle X , the abstractive summarization task tries to generate a
summary Ŷ = {ŷ1, ŷ2, ..., ŷm}, where m denote the length
of the generated summary. For the text categorization task,
given an input article X , our objective is to predict the cate-
gory label L̂ for the input text. For syntax labeling, we have
Z = {z1, z2, ..., zm} denoting the CCG supertag sequence
for the corresponding summary Ŷ of source text X .

Shared Bi-LSTM encoder: The summarization shares
encoder with the text categorization task. Each word x in the
source text is mapped through the embedding layer. Then,
given the input word embedding vi at time step i, the hidden
state hi can be updated with the previous hidden state hi−1

as hi = Bi-LSTM(hi−1, vi). In this way, we obtain the hid-
den states H = {h1, ..., hn} for the source text X . For text
categorization, we use the final state hn as the representa-
tion of source text. hn is then fed into a task-specific fully
connected layer with softmax to predict the category label.

Shared LSTM decoder: LSTM decoder is shared by
summarization and syntax labeling tasks. On each decod-
ing step t, the decoder receives the input ut (while training,
ut is the embedding of previous word of reference sum-
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mary; at test time it is the embedding of previous word
emitted by the decoder) and update its hidden state st as
st = LSTM(st−1, ct, ut), where ct is the context vector at
time step t. It can be computed follow the widely used at-
tention mechanism (Bahdanau, Cho, and Bengio 2015). We
then feed the concatenated vector [ct, st] to a linear function
to produce the hidden vector of the decoder Ot. The gen-
eration probabilities of the tth word (w) and CCG supertag
(tag) can be written as the following:

Pw
t = P (yt|Y1:t−1;X) = softmax(UwOt + bw) (1)

P tag
t = P (zt|Y1:t−1;X) = softmax(U tagOt + btag) (2)

However, the pure generation model sometimes suffers
from the out-of-vocabulary(OOV) generation issue and pro-
duces many ”UNK” tokens in the summary. We adopt the
copy mechanism (See, Liu, and Manning 2017) to alleviate
this limitation. The generation probability pgen ∈ [0, 1] for
time step t is calculated from the context vector ct, the de-
coder state st, and the decoder input ut:

Pgen = σ(V T
c ct + V T

s st + V T
u ut + bgen) (3)

We then incorporate a switching pointer-generator net-
work to use either word generator from fixed vocabulary or
pointer copying OOV words from the source. We can get the
final probability P (wj) of each token ŷt in the summary.

Multi-task Learning: Our model consists of three sub-
tasks, each has its own training objective. For text cate-
gorization, the objective is to minimize its cross entropy
loss: J text

ml (θ) = −
∑N

i=1 Lilog(L̂i). For the summarization
and syntax labeling subtasks, we employ the minimum neg-
ative log-likelihood estimation: J sum

ml (θ) = −
∑T log(Pw

t )
and J syn

ml (θ) = −
∑T log(P s

t ). For the purpose of improving
shared encoder and decoder, we train the three tasks simul-
taneously. The joint multi-task objective is minimized by:

Jml = λ1J
text
ml + λ2J

sum
ml + λ3J

syn
ml (4)

where λ1 = λ2 = 0.45 and λ3 = 0.1 are hyper-parameters
that determines weights of three objectives by performing
grid search on validation set.

To maximize long-term rewards and alleviate the expo-
sure bias, we also optimize directly for ROUGE-1 using pol-
icy gradient, and minimize the negative expected rewards:
J sum

rl (θ) = (r(ŷ) − r(ys))
∑n log p(yst |Y s

1:t−1;X), where r(ŷ)
is the reward of greedy decoding generated sequence and
r(ys) is the reward of sequence generated by sample among
the vocabulary at each step. After pre-training the proposed
model by minimizing joint ML objective Eq. 4, we switch
the model to minimize mixed training objective: Jmixed =
βJml + (1− β)J sum

rl , where β = 0.1 is a hyper-parameter.

Experiments
We evaluate our model on the CNN/Daily Mail Corpus,
which comprises news stories paired with multi-sentences
human generated summaries. For the text categorization
task, the source webpage of each news story indicates the
specific category of each story. For syntax annotation, the
training data is annotated with CCG supertags, where each
word has a corresponding dependency label of supertags.

We compare our model with several state-of-the-art meth-
ods including ABS (Nallapati et al. 2016), Lead-3 and Sum-
maRuNNer2 (Nallapati, Zhai, and Zhou 2017), PGC (See,
Liu, and Manning 2017), DeepRL (Paulus, Xiong, and
Socher 2018), and GANsum (Liu et al. 2018).

Methods ROUGE (F1 Score) Human
1 2 L Score

ABS 35.46 13.3 32.65 1.10
Lead-3* 39.2 15.7 35.5 -

SummaRuNNer* 39.6 16.2 35.3 -
PGC 39.53 17.28 36.38 3.38

DeepRL 39.87 15.82 36.90 4.48
GANsum 39.92 17.65 36.71 4.7

MATS w/o text 40.37 17.79 36.75 4.52
MATS w/o syntax 40.62 17.96 37.01 4.64

Our model (MATS) 40.74 18.14 37.15 5.18

Table 1: Experiment results

Quantitative Evaluation Table 1 shows that our model
outperforms the baseline methods by a noticeable margin.
To investigate the effect of each component of our model,
we also perform the ablation test of MATS in terms of dis-
carding text categorization (w/o text) and syntax generation
(w/o syntax), respectively. Our model substantially outper-
forms the baseline methods by a noticeable margin.

Qualitative Evaluation We also evaluate the informative-
ness and fluency of the generated summaries by randomly
select 50 examples from the test set. Two human evalua-
tors are required to perform ranking of summaries by tak-
ing the above 2 factors into consideration, where 1 indicates
the lowest level and 7 indicates the highest level. The exper-
imental results based on human evaluation are summarized
in Table 1. MATS achieves the best results.
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