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Abstract
The main focus of this work is an optimization-based frame-
work for control of multi-agent systems that synthesizes ac-
tions steering a given system towards a specified state. The
primary motivation for the research presented is a fascina-
tion with birds, which save energy on long-distance flights
via forming a V-shape. We ask the following question: Are
V-formations a result of solving an optimization problem and
can this concept be utilized in multi-agent systems, particu-
larly in drones swarms, to increase their safety and resilience?
We demonstrate that our framework can be applied to any
system modeled as a controllable Markov decision process
with a cost (reward) function. A key feature of the procedure
we propose is its automatic adaptation to the performance
of optimization towards a given global objective. Combining
model-predictive control and ideas from sequential Monte-
Carlo methods, we introduce a performance-based adaptive
horizon and implicitly build a Lyapunov function that guaran-
tees convergence. We use statistical model-checking to verify
the algorithm and assess its reliability.

Taking Off
Airplane industry is making every effort to lower their fuel
costs by as little as one percent. In August 2017, Boeing
Co. and NASA announced a collaboration on reducing fuel
consumption of commercial flights by copying the ways in
which migratory birds successfully perform long-distance
flights (Bloomberg 2017). They do so by taking advan-
tage of the upward air boost generated under the flapping
wings of their flock mates while the leader does most of the
work (Weimerskirch et al. 2001).

This line of research is ongoing and Boeing is actively
striving to collect evidence showing an expected ratio of
saved fuel for commercial aircraft. NASA, in turn, has
been long studying efficient nature-inspired approaches to
flights in the Earth’s atmosphere and outer space (NASA
2003). Their experiments with Boeing C-17 military trans-
port planes (Forse 2013) and F-18 fighter jets (NASA 2001)
flying in formation showed an energy saving of at least 10
and 15 percent, respectively. The core of this work was in-
spired by these discoveries and designed to improve state-of-
the-art techniques for control of stochastic multi-agent sys-
tems (MAS) in general.
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In this work, we aim to design a real-time adaptive op-
timization framework for the resilient formation control of
unmanned aerial vehicles in adversary environmental con-
ditions. We envision that a bird-inspired optimization tech-
nique can help a collection of autonomous agents fly safely
and efficiently while maintaining formation.

The physical environment renders the problem of MAS
control extremely cumbersome. Due to a wealth of un-
certainties introduced by physical processes, the system is
best described by stochastic models. Approximate predic-
tion techniques, such as statistical model checking (SMC),
have therefore recently become increasingly popular (Grosu
and Smolka 2005; Clarke and Zuliani 2011). Controlling the
systems, that is, computing appropriate response actions de-
pending on the environment, involves probabilistic state es-
timation, as well as optimal action prediction, i.e., choosing
the best next step by simulating the future. In this work, we
develop a general framework addressing questions of control
of multi-agent systems under uncertainty via optimization.

Ground Control
The main contribution of this work is a general adaptive op-
timization framework for control of MAS. Every bird-like
agent in our model moves in 2-dimensional space locally
governed by the same control law (Yang et al. 2016). Any
agent in the flock can detect the positions and velocities of
all other agents through sensors. Given this information, the
agent’s controller calculates an optimal acceleration based
on the three metrics we define: clear view, velocity match-
ing, and upwash benefit. Formulated this way the optimiza-
tion problem we solve leads to a V-formation as an optimal
state for the flock.

Ultimately, we synthesize an algorithm providing analyt-
ical guarantees of birds getting into a V-formation start-
ing from a random configuration using a flying drones
simulation model and statistical model checking (Lukina
et al. 2017; Tiwari et al. 2017). Particle swarm optimiza-
tion (Kennedy and Eberhart 1995) uniformly distributes the
particles in space and adjusts their velocities to lead the
swarm to satisfying a given property while using a random
factor in the adjustment rule in order to explore the space.

The resulting V-formation provides the birds with a clear
view of the front field and visibility of their lateral neigh-
bors. Moreover, the formation is of great importance to
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Figure 1: Main components of the adaptive optimization
framework. Arrows direct the process flow of the algorithm.

flocking birds for saving energy from the free lift as a ben-
eficial effect of the upwash region generated off the trailing
edge of wings of the birds in front of them (Weimerskirch
et al. 2001). We believe this approach can lead to a break-
through discovery in developing energy-efficient and reli-
able autonomous technologies.

Due to stochastic nature and large scale of the systems
we are interested in, the most promising sources of answers
to the questions we pose are approximate algorithms, meta-
heuristic techniques, and optimization-based approaches to
control. Experimenting with existing algorithms in appli-
cation to our model inspired us to develop a general opti-
mization framework, self-adaptive and flexible for the user
to specify a problem setting and properties of their interest.

The block-diagram in Figure 1 comprises main compo-
nents of the framework and its process flow. In brief, the core
procedure is enclosed in the outer dashed block, which per-
forms level-by-level adaptive model-predictive control in-
spired by sequential Monte-Carlo methods. It receives a con-
trollable stochastic multi-agent system on the top left and a
cost function on the top right as inputs. Resulting from the
space-time exploration using particle swarm optimization, if

the minimal cost can be reached, the framework outputs a
controller driving the system towards optimal state. Other-
wise, it provides statistical guarantees that no path exists.

Landing
Regarding deployment, we see the following approach. The
framework can be implemented as a local controller on each
drone and communication will require broadcasting posi-
tions and output of the algorithm to other drones in the
neighborhood through a shared memory. In this case, a cen-
tral agent will be needed to periodically compute the global
cost. We plan to use OpenUAV (Schmittle et al. 2018) to test
the framework on drone formation control scenarios.
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