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Introduction
Oversubscription planning (OSP) (Smith 2004) is a prob-
lem of choosing an action sequence which reaches a state
with a high utility, given a budget for total action cost.
This formulation allows to handle situations with under-
constrained resources, which do not allow to achieve all pos-
sible goal propositions. In optimal OSP, the task is further
constrained to finding a path which achieves a state with
maximal utility. Best-First-Branch-and-Bound (BFBB) is a
heuristic search algorithm which is widely used for solv-
ing OSP problems. BFBB relies on an admissible utility-
upper-bounding heuristic function (with budget restrictions)
h : S × R0+ → R to estimate the true utility h∗(s, b). An
incremental BFBB search algorithm with landmark-based
approximations (inc-compile-and-BFBB) was proposed for
OSP heuristic search (Domshlak and Mirkis 2015) to ad-
dress tasks with non-negative and 0-binary utility functions.
inc-compile-and-BFBBmaintains the best solution so far and
a set of reference states, extended with all the non-redundant
value-carrying states discovered during the search. Each it-
eration requires search re-start in order to exploit the new
information obtained along the search. Recent work pre-
sented a relative estimation of achievements with value-
driven landmarks (Muller and Karpas 2018a) addressing ar-
bitrary additive utility functions, which incrementally im-
proves the best solution so far eliminating the need to main-
tain a set of reference states. This paper proposes a progres-
sive frontier search algorithm, which alleviates the compu-
tational cost of search restart once new information is ac-
quired. Our technique allows the new search iteration to con-
tinue from any state on the frontier of the previous search
iteration, leading to improved efficiency of the search. An
extended version of this abstract is available online (Muller
and Karpas 2018b).

Background
We represent OSP model in a language close to SAS+ for
classical planning (Bäckström and Klein 1991; Bäckström
and Nebel 1995), an oversubscription planning (OSP)
task is given by a sextuple Π = 〈V, s0, u;O, c, b〉, where
V = {v1, . . . , vn} is a finite set of finite-domain state vari-
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ables, with each complete assignment to V representing a
state, and S = dom(v1) × · · · × dom(vn) being the state
space of the task; s0 ∈ S is a designated initial state; u is
an efficiently computable state utility function u : S → R;
O is a finite set of actions, with each action o ∈ O be-
ing represented by a pair 〈pre(o), eff(o)〉 of partial assign-
ments to V , called preconditions and effects of o, respec-
tively; c : O → R0+ is an action cost function; b ∈ R0+

is a cost budget allowed for the task. An assignment of a
variable v to value d is denoted by 〈v/d〉 and referred as a
proposition. For a partial assignment p to V , let V(p) ⊆ V
denote the subset of variables instantiated by p, and, for
v ∈ V(p), p[v] denote the value provided by p to the vari-
able v. Action o is applicable in a state s if s[v] = pre(o)[v]
for all v ∈ V(pre(o)). Applying o changes the value of each
v ∈ V(eff(o)) to eff(o)[v], and the resulting state is denoted
by sJoK. A sequence of actions 〈o1, . . . , om〉 denoted by π,
called a plan for s if it is applicable in s and c(π) ≤ b.
We assume a arbitrary additive utility function with multi-
valued variables, defined as u(s) =

∑
〈v/d〉∈s uv(d), with

uv(d) ∈ R for all variable-value pairs 〈v/d〉.

OSP Frontier Search
Let Π = 〈V, s0, u;O, c, b〉 be an OSP task, given a set of
plans π1, . . . , πn for Π with the corresponding set of end-
states Sref = {s1, . . . , sn} of Π, si = s0JπiK. Let a plan
π with end-state s be a newly discovered plan that achieves
something beyond what π1, . . . , πn already achieve. To ex-
ploit the information about the newly discovered valuable
state, we must restart the search from the initial state. To
avoid re-exploration of states that have been discovered in
current iteration, we modify Π to hold the acquired informa-
tion compactly for next iteration.

Definition 1. Given an OSP task Π = 〈V, s0, u;O, c, b〉,
a set of states and costs Sfront = {(s1, c1), . . . , (sn, cn)}
of Π, where {s1, . . . , sn} are the states at the frontier and
{c1, . . . , cn} are the budgets invested in reaching the re-
spective frontier states from the initial state s0, the frontier-
compilation of Π is an OSP task Π̄ = 〈V̄ , s̄0, ū; Ō, c̄, b̄〉
with V̄ = {v′ | v ∈ V } where dom(v′) = dom(v) ∪ {⊥},
s̄0 = sdum = {〈v/⊥〉 | ∀v ∈ V }, ū is the same as u, except
that ū(〈v/⊥〉) = −∞ for each v ∈ V , Ō = O ∪

⋃n
i=1 osi ,

with pre(osi)={〈v/⊥〉 | ∀v ∈ V }, eff(osi)=si, c̄(osi) = ci,
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Figure 1: An example of prog-inc-compile-and-BFBB pro-
cedure, with (a)-(c) depicting snapshots of the search at the
end of each iteration. Undiscovered states are uncolored;
discovered ones are green; the frontier of each iteration is
circles in red; (a) shows the graphical skeleton of the search
space of each iteration. (b) and (c) depict the relevant infor-
mation for reconstruction when the solution is reached.

c̄(o)=c(o), b̄ = b.

In plain words, frontier-compilation extends Π with dummy
initial state sdum, and a set of dummy operators os1 , . . . , osj ,
which applicable only at sdum. For each plan πj and state sj ,
dummy operator osj constructed to achieve sj at total cost of
πj , sdumJosj K = sj , and the cost c(osj ) = c(πj). This mod-
ification preserves the semantics of Π with regard to states
that not discovered yet, while the growth in the description
of the obtained task is linear in the size of the memory that
is already consumed by the search. We then perform value
driven landmarks compilation (Muller and Karpas 2018a)
on the frontier compilation of Π. The extracted set of value
driven landmarks is compiled into Π, obtaining a new OSP
task ΠL integrating the direct “guidance” from initial state
towards the frontier of the last iteration break point. This al-
lows to avoid restart the search from scratch and re-generate
nodes, as it occur in the inc-compile-and-BFBB procedure,
leading to an improved runtime efficiency of the search.
Theorem 1. Let Π = 〈V, s0, u;O, c, b〉 be an OSP task,
Sfront = {s1, . . . , sn} be a subset of Π’s states comprising
the search frontier at node expansion t, {c1, . . . , cn} be the
costs of the respective plans towards the frontier nodes , and
Π̄ be the respective frontier-compilation of Π. For any op-
timal plan π for Π, revealed at node expansion t

′ ≥ t with
cost of c(π) = b′, where b′ ≤ b, and u(π) = α, there
exists a plan π̄ for Π̄, such that c(π) = c̄(π̄) = b′ and
u(π) = ū(π̄) = α. Correspondingly for each π̄ for Π̄ there
exists a plan π for Π.

The frontier is a snapshot of the OPEN list with additional
details of spent budget to achieve each node. The proof
of correctness of frontier search is by the construction of
Sfront := Sfront∪{(s〈n〉, g(n))} and the anytime “output im-

provement” property of the BFBB forward search: BFBB
maintains the best-so-far solution, and prunes all branches
that promise value lower or equal to u(π). All the gener-
ated nodes nwith cost-so-far g(n) higher than the problem’s
budget b are also immediately pruned. With each update of
best so far solution n∗, it is added to Sfront. By maintaining
for each node on the frontier a respective best so far budget
spent to reach it, for any optimal solution π∗ of Π, there is a
corresponding solution π̄∗ in Π̄.

We introduce a progressive frontier search with plan
reconstruction algorithm, called prog-inc-compile-and-
BFBB, which dynamic depicted in Figure 1. prog-inc-
compile-and-BFBB exploits Theorem 1 to directly extend
inc-compile-and-BFBB with a continuous progression pro-
cedure to avoid search restart from scratch. At each itera-
tion i, prog-inc-compile-and-BFBB generates a search tree
treei from fronti−1 to fronti, as depicted in Figure 1 (a).
Once the end-state of the optimal plan is discovered, we
need to reconstruct the corresponding plan. While this step
is straightforward in inc-compile-and-BFBB, in prog-inc-
compile-and-BFBB it requires maintaining the trees {treei}
generated during the search in order to backtrack the plan.
At the same time, the overall size of the tree set {treei}
roughly equals the size of the single search tree that is
generated and maintained by the inc-compile-and-BFBB.
At each iteration of prog-inc-compile-and-BFBB the fron-
tier defines a cross-line in the graph, illustrated in Fig-
ure 1 (b). This allows us to use (Korf and Zhang 2000;
Korf et al. 2005) technique for plan reconstruction. Figure1
(c) aims to show the backtracking effort and information.
For each node on fronti we hold the coordinates of its an-
cestor on fronti−1, this is adequate to backtrack a plan.
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