
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

An Improved Hierarchical Datastructure for Nearest Neighbor Search

Mengdie Nie,1,4 Zhi-Jie Wang,1,4,∗ Chunjing Gan,1,4 Zhe Quan,2 Bin Yao,3 Jian Yin1,4

1Sun Yat-Sen University, 2Hunan University, 3Shanghai Jiao Tong University.
4Guangdong Key Laboratory of Big Data Analysis and Processing

{niemd,ganchj3}@mail2.sysu.edu.cn, quanzhe@hun.edu.cn, yaobin@cs.sjtu.edu.cn, {wangzhij5,issjyin}@mail.sysu.edu.cn

Abstract
Nearest neighbor search is a fundamental computational tool
and has wide applications. In past decades, many datastruc-
tures have been developed to speed up this operation. In this
paper, we propose a novel hierarchical datastructure for near-
est neighbor search in moderately high dimension. Our pro-
posed method maintains good run time guarantees, and it out-
performs several state-of-the-art methods in practice.

Introduction
Nearest neighbor (NN) search is a basic computational tool
that can be applied to many domains. The datastructure uti-
lized plays a key role in NN search, and it can be used to
speed up the kNN classification algorithm and many other
tasks such as reinforcement learning (Izbicki and Shelton
2015). The basic NN problem is as follows: Given a set S
of n points in some metric space (X, d), the problem is to
preprocess S so that given a query point q ∈ X , one can
find efficiently a point p ∈ S which minimizes d(q, p).

The naive method involves a linear scan of all the data
points and takes time O(n). So far, many datastructures
such as kd-tree have been developed to speed up this pro-
cess. There are also some more complicated and power-
ful datastructures like the metric skip list (Karger and Ruhl
2002) and the navigating net (Krauthgamer and Lee 2004).
Later, (Beygelzimer, Kakade, and Langford 2006) proposed
the cover tree (CT) — a leveled tree where each level is a
“cover” for the level beneath it. It is a hierarchical datastruc-
ture that simplifies navigating nets while it maintains good
run time guarantees (consuming linear space and logarith-
mic time). Recently, (Izbicki and Shelton 2015) developed
the simplified nearest ancestor cover tree (SNACT), which
provides a simpler definition, reducing the number of nodes
from O(n) to exactly n. Moreover, it introduces an “addi-
tional” invariant, i.e., nearest ancestor invariant, that makes
queries faster in practice. This paper revisits cover tree struc-
tures and develops a new method that achieves the same run

∗means the corresponding author. This work was par-
tially supported by the National Key R&D Program of China
(2018YFB1004400), and the NSFC (61472453, U1401256,
U1501252, 61602166, U1611264, U1636210, U1711261,
61729202, U1711262, 61872235, 61832017).
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

time guarantees while it significantly outperforms them in
practice.

The Proposed Method
Following (Izbicki and Shelton 2015), we use level(p),
children(p) and descendants(p) to denote the level,
children and descendants of node p, respectively. Generally,
similar to SNACT, our method also maintains several invari-
ants (i.e., leveling, covering, separating, and nearest ances-
tor invariants) when constructing our structure. Instead, we
introduce several other important concepts to enhance the
pruning ability, and so improve the search efficiency.

One of our ideas is to use a concept called range list, de-
noted by rl. The jth (j ≥ 0) element in rl is computed as

rl[j] = argmax
q ∈ descendants(p)

level(p)− 1− j ≤ level(q) ≤ level(p)− 1

d(p, q)

The equation above implies that rl[j] stores the maximum
distance from p to its descendants whose levels are in the
corresponding range. For any point p′, let rlfinal denote the
final element in rl, and assume p is the current NN (found
so far) of q. Our range list has the following advantages:
(i) when d(p′, q) − rlfinal ≥ d(p, q), it can help us prune
the whole subtree rooted at p′; and (ii) otherwise, we may
find an appropriate j such that d(p′, q) − rl[j] ≥ d(p, q) >
d(p′, q)− rl[j+1], thereby we can prune nodes (in the sub-
tree) whose levels are in [level(p′)− 1− j, level(p′)].

Another main idea is to introduce the concept of opposite
quadrant. One can easily understand that the horizontal and
vertical axes of a d-dimensional Cartesian coordinate system
divides the data space into 2d parts, numbered as 0 to 2d−1.
For a node p, denote by parent(p) its parent node. We
can view parent(p) as the original point (of the coordinate
system), and then define p’s quadrant information below.

p† =

d∑
i=1

2i, s.t. p[i] < 0

The equation above essentially accumulates all 2i that can
satisfy p[i] < 0, where p[i] refers to the ith dimension value
of point p. Given any other point p′, we say p and p′ are in
the opposite quadrant if and only if p† + p′† = 2n − 1. This
concept is helpful for us to prune unqualified nodes, since

10001

one can replace p′ with the query point q, and then all points
satisfying the above condition can be pruned safely.

Besides, we introduce the vectorial angle cosine to fur-
ther enhance the pruning ability. Assume p is the current
NN of query point q, one can imagine that there exists a hy-
perplane P that is vertical to segment pq and passes through
p. This implies that P divides the data space into two parts.
Clearly, for any point p′ located in the part that does not
contain q, it is never to be the NN of q. This can be deter-
mined by computing the vectorial angle cosine defined as
vac = cosθ = ~pq· ~pp′

| ~pq|×| ~pp′| . It is obvious (by analytic geome-

try) that, if vac < 0, then p′ can be pruned safely.
The above ideas can be easily integrated into the SNACT.

In brief, one can calculate the range list and quadrant infor-
mation when the tree is constructed, and then attach them
as additional attributes to corresponding nodes. Later, we
can leverage the new hierarchical datastructure containing
these additional attributes to assist us to perform NN search.
Note that, the vectorial angle cosine and the quadrant infor-
mation q† of query point q are calculated during the query.
The paradigm of performing NN search is basically simi-
lar to that of SNACT. That is, we start from the root and
keep track of the current NN from a subset Si that may con-
tain the NN of q, and then this process iteratively constructs
Si−1 by expanding Si to its children. In the process of ex-
panding Si, some unqualified children are pruned based on
heuristics designed above. The rest of steps are the same to
that in SNACT. Note that, in SNACT the major heuristic is
the maxdist(p), whose function is equal to advantage (i) of
our range list.

One can easily understand that our modifications to SN-
ACT do not change the breadth of the non-leaf node and the
depth of the tree. Namely, it is same to the SNACT: every
node can have at most O(c4) children and the depth of the
tree is bounded by O(c2 log n). Thus, the runtime bound of
our solution is also O(c6 log n), where n is the number of
data points, and c is the expansion constant.

Experiments and Results
To evaluate our solution, we use three benchmark datasets
obtained from http://archive.ics.uci.edu/ml/index.php. They
are yearpredict (515,345 points with 90 dimensions), corel
(68,040 points with 32 dimensions), artificial40 (10,000 ran-
dom generated points with 40 dimensions), respectively.

We compare the proposed method (PM) with two com-
petitors: CT and SNACT. Following (Izbicki and Shelton
2015), we use “all nearest neighbour search” to study the
query performance and also normalize the query cost by the
baseline. Remark that “all nearest neighbor search” refers to
searching the nearest neighbor for each point in the dataset.
Furthermore, to study the effectiveness of the proposed tech-
niques, we implement several other algorithms, which are
the variants of SNACT: (i) QI, which employs the quadrant
information; (ii) RI, which employs the range list informa-
tion; (iii) DI, which employs the direction information (in-
cluding quadrant and vectorial angle). All methods are im-
plemented in C++, and are executed on a machine with an
Intel(R) Core(TM) CPU @2.40GHZ and 64GB RAM.

Table 1: The comparison results on three benchmark
datasets. The query cost is normalized by CT.

Dataset
Method CT SNACT PM

artificial40 1.00 0.81 0.62
yearpredict 1.00 0.56 0.38

corel 1.00 0.59 0.33

Table 1 reports the comparison results of three meth-
ods. From this table, it can be seen that PM has less query
cost compared against two competitors on all these three
datasets. More specifically, compared to CT, our method can
reduce the query cost by 38% ∼ 67%. Even for the stronger
competitor SNACT, our method can reduce the query cost
by 24%∼ 46%. These evidences essentially demonstrate the
competitiveness of our proposed method.

0

0.2

0.4

0.6

0.8

1

SNACT QI RI DI PM

qu
er

y
co

st

Methods

Figure 1: All these results are obtained based on the corel
dataset. The query cost is normalized by SNACT.

Figure 1 shows the comparison results of SNACT, QI,
RI, DI, and PM on the corel dataset. We can see that QI,
RI, and DI achieve about 8%, 20%, 30% speed ups, respec-
tively. This essentially verifies the effectiveness of these pro-
posed strategies. In addition, one can see that PM, which in-
tegrates all these proposed strategies, achieves the best per-
formance result (about 46% speed up, compared against SN-
ACT). This further reflects the efficiency and effectiveness
of our method.

Conclusion
In this paper we suggested a new method for nearest neigh-
bor search in moderately high dimension. We conducted em-
pirical study on three benchmark datasets. The experimental
results consistently demonstrate that our method is efficient
and competitive, compared against the competitors.

References
Beygelzimer, A.; Kakade, S.; and Langford, J. 2006. Cover
trees for nearest neighbor. In ICML, 97–104.
Izbicki, M., and Shelton, C. R. 2015. Faster cover trees. In
ICML, 1162–1170.
Karger, D. R., and Ruhl, M. 2002. Finding nearest
neighbors in growth-restricted metrics. In STOC, 741–750.
Krauthgamer, R., and Lee, J. R. 2004. Navigating nets:
simple algorithms for proximity search. In SODA, 798–807.

10002

