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Abstract

In this paper, we propose a novel oversampling strategy
dubbed Entropy-based Wasserstein Generative Adversarial
Network (EWGAN) to generate data samples for minority
classes in imbalanced learning. First, we construct an entropy-
weighted label vector for each class to characterize the data im-
balance in different classes. Then we concatenate this entropy-
weighted label vector with the original feature vector of each
data sample, and feed it into the WGAN model to train the
generator. After the generator is trained, we concatenate the
entropy-weighted label vector with random noise feature vec-
tors, and feed them into the generator to generate data samples
for minority classes. Experimental results on two benchmark
datasets show that the samples generated by the proposed
oversampling strategy can help to improve the classification
performance when the data are highly imbalanced. Further-
more, the proposed strategy outperforms other state-of-the-art
oversampling algorithms in terms of the classification accu-
racy.

Introduction
Oversampling is an effective strategy in sampling methods
(Chawla et al. 2002; Douzas and Bacao 2018) for imbalanced
learning. It aims to generate data for minority classes to over-
come the data imbalance problem. Representative oversam-
pling methods include the simplest data replication, the clas-
sical synthetic minority oversampling technique (SMOTE)
(Chawla et al. 2002) and its variants (Last, Douzas, and Baçao
2017), etc.

Recently, the generative adversarial network (GAN)
(Goodfellow et al. 2014) in deep learning has received much
attention as it showed good potential in generating artificial
data which resemble the real-world data such as images. Mo-
tivated by the success of GAN in unsupervised learning tasks,
its idea has been transplanted to supervised learning, includ-
ing imbalanced learning. Douzas and Bacao (2018) employed
the conditional GAN (cGAN) to incorporate label vectors
into feature vectors for training, and used the trained genera-
tor to generate samples for minority classes. Although this
method has demonstrated the state-of-the-art performance
in data generation, a shortcoming is that the label vectors
used in the method are one-hot vectors, which may not be
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able to characterize the imbalance between different classes.
Moreover, a potential limitation of cGAN is the learning
instability, which is caused by the Kullback-Leibler diver-
gence (KL divergence) used in GANs (Arjovsky, Chintala,
and Bottou 2017).

To address the aforementioned limitations while inheriting
GANs’ powerful ability in data generation, we propose a
novel oversampling strategy called Entropy-based Wasser-
stein GAN (EWGAN), which constructs an entropy-weighted
label vector for each class to characterize the data imbalance
in different classes and trains the generator using a WGAN
model (Arjovsky, Chintala, and Bottou 2017), overcoming
the learning instability of GAN by using the Wasserstein
distance to replace KL divergence.

Entropy-based Wasserstein Generative
Adversarial Network

Given the training set {x1, · · · ,xn} with n data samples,
where xi ∈ Rd denotes the i-th sample (i = 1, · · · , n) and d
denotes the dimension of the feature vector. The label vector
associated with xi is denoted as yi, where yi = [1, 0]T

indicates that xi belongs to the majority class while yi =
[0, 1]T indicates that xi belongs to the minority class. The
objective of EWGAN is generating samples x′1, · · · ,x′p for
the minority class, by learning the data distribution from
the given dataset, where p = nmajor − nminor denotes the
number of samples to be generated, and nmajor and nminor
denote the number of samples in the majority class and that
in the minority class, respectively.

To describe the imbalance between different classes, we
construct an entropy-weighted label vector for each class.
First, we define Ii (i = 1, · · · , n) for each sample to indi-
cates the importance of class yi. Inspired by the focal loss
proposed for object detection (Lin et al. 2017), we introduce
the following entropy-based formulation to calculate Ii:

Ii = −
(1− pi)2

pi
log(pi), (1)

where pi denotes the proportion of class yi in the dataset.
Obviously, small proportion indicates high importance. Ac-
cordingly, the entropy-weighted label vector is constructed
as ŷi = Ii · yi (i = 1, · · · , n).

We then concatenate xi and ŷi as ui = [xTi , ŷ
T
i ]
T , and

concatenate a random feature vector r′i and ŷi as zi =
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Algorithm 1 Entropy-based Wasserstein GAN (EWGAN)
Input: The training dataset {(x1,y1), · · · , (xn,yn)}.
Output: The generated data x′1, · · · ,x′p for minority class.
1: for i← 1, · · · , n do
2: Ii ← − (1−pi)2

pi
log(pi);

3: ui ← [xTi , Ii · yTi ]T ;
4: zi ← [rTi , Ii · yTi ]T ;
5: end for
6: for t← 1, · · · , Touter do
7: for t← 1, · · · , Tinner do
8: Sample a batch from {u1, · · · ,un};
9: Sample a batch from {z1, · · · , zn};

10: gw ←5w[ 1
m
σmi=1fw(ui)− 1

m
Σmi=1fw(gθ(zi))];

11: w ← w + αRMSProp(w, gw);
12: w ← clip(w,−c, c);
13: end for
14: Sample a batch from {z1, · · · , zn};
15: gθ ← −5θ 1

m
Σmi=1fw(gθ(zi));

16: θ ← θ − αRMSProp(θ, gθ);
17: end for
18: for j ← 1, · · · , p do
19: x′j ← gθ([r

′T
j , Ij · y′

T
j ]T );

20: end for

[rTi , ŷ
T
i ]
T . We feed them into the EWGAN model to train the

generator and discriminator. The loss functions for generator
and discriminator are given as follows:

−Er∼Pr [fw(gθ(z))], (2)

Er∼Pr [fw(gθ(z))]− Ex∼Px [fw(u)], (3)

where Pr and Px denote the distribution of generated samples
and that of the existing samples in a specific class, respec-
tively, gθ(·) and fw(·) denote the generator and discriminator,
respectively, and θ and w are the parameters of the generator
and discriminator, respectively. Thus, the target of EWGAN
is to maximize the following objective function:

argmax
θ,w

Er∼Pr [fw(gθ(z))]− Ex∼Px [fw(u)]. (4)

Once the model is trained, the generator will be used to
generate the data samples for the minority class. The details
of EWGAN is described in Algorithm 1.

Experiments
We use two benchmark imbalanced datasets, Vowel0
and Page-blocks0, for performance evaluation
(https://sci2s.ugr.es/keel/imbalanced.php). The size,
dimension, and imbalance ratio of these datasets are listed
in Table 1. To validate the effectiveness of EWGAN, we
compare it with three state-of-the-art algorithms, Kmeans-
SMOTE (Last, Douzas, and Baçao 2017), WGAN (Arjovsky,
Chintala, and Bottou 2017), and cGAN (Douzas and Bacao
2018). The result without oversampling is used as the
baseline.

For the Vowel0 dataset, we split it into the training set with
20 positive samples and 828 negative samples and the test
set with 70 positive samples and 70 negative samples. For
the Page-blocks0 dataset, we split it into the training set with

Table 1: Statistics of the benchmark datasets.
Vowel0 Page-blocks0

Size 988 5472
Dimension 13 10

Imbalance Ratio 9.98 8.79

Table 2: The classification accuracy of SVM with no oversam-
pling as well as oversampling via Kmeans-SMOTE, WGAN,
cGAN, and the proposed EWGAN on Vowel0 and Page-
blocks0 datasets. The best performances are highlighted in
bold.

Vowel0 Page-blocks0

No Oversampling 0.5645± 0.0001 0.8023± 0.0025
Kmeans-SMOTE 0.6393± 0.0003 0.7868± 0.0014

WGAN 0.5638± 0.0007 0.7014± 0.0006
cGAN 0.8135± 0.0003 0.7567± 0.0004

EWGAN 0.8385± 0.0006 0.8322± 0.0007

259 positive samples and 4663 negative samples and the test
set with 250 positive samples and 250 negative samples. For
the proposed EWGAN, we set Touter = 40 and Tinner = 5.
After data generation, the Support Vector Machine (SVM) is
utilized for classification. We repeat the experiment for 10
times on randomly selected training/test sets and report the
average results and standard deviations.

The performances of all the methods are shown in Table 2.
Note that WGAN does not perform well as is unsupervised,
and thus the data generated by WGAN cannot take the la-
bel information into consideration. With the ability of data
generation inherited from WGAN and the incorporation of
entropy-weighted label vectors in the learning process, EW-
GAN outperforms other algorithms on both datasets.

Conclusion
In this paper, we proposed EWGAN, aiming at generating
data for the minority class in imbalanced learning. The pro-
posed method achieved good performance on Vowel0 and
Page-blocks0 datasets. In our future work, we will extend the
proposed model to the multi-class version and validate its
performance on more large-scale datasets.
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