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Abstract

As technology and society grow increasingly dependent on
computer vision, it becomes important to make sure that
these technologies are secure. However, even today’s state-
of-the-art classifiers are easily fooled by carefully manipu-
lated images. The only solutions that have increased robust-
ness against these manipulated images have come at the ex-
pense of accuracy on natural inputs. In this work, we pro-
pose a new training technique, localized adversarial training,
that results in more accurate classification of both both nat-
ural and adversarial images by as much as 6.5% and 99.7%,
respectively.

Introduction
Since the advent of machine learning to the field of computer
vision, image classification software has surpassed human
capabilities and enabled a slew of new technologies includ-
ing facial recognition authentication, self-driving cars, and
smart security cameras (Akhtar and Mian 2018). However, a
unique challenge threatens these technologies: the existence
of images which appear normal to humans, but reliably fool
image classifiers (Szegedy et al. 2014). Because convolu-
tional neural networks (CNNs) tend to focus on minor and
easily manipulated details, attacks such as the Fast Gradi-
ent Sign Method (FGSM), discovered by Goodfellow et al.
(Goodfellow, Shlens, and Szegedy 2015), and its iterative
counterpart, Projected Gradient Descent (PGD) from Ku-
rakin et al. (Kurakin, Goodfellow, and Bengio 2017), have
been able to reliably generate adversarial examples by re-
verse engineering the training process. In the same way a
classifier’s weights are updated to minimize its loss during
training, an adversarial attack updates a particular image to
maximize the classifier’s error on that image. Adversarial
training, the process of including adversarial examples in
the training set, is one popular defense technique. However,
while this technique has been shown to improve the robust-
ness of a classifier against adversarial examples, the inclu-
sion of adversarial images in the training process weakens
classifiers’ accuracy on natural, unaltered images (Tsipras et
al. 2018) (Su et al. 2018). Building classifiers that maintain
state-of-the-art accuracy on both natural and adversarial ex-
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amples is a key challenge in image classification, as a solu-
tion would provide not only defense, but also insight into the
nature of CNNs (Tsipras et al. 2018). This work outlines the
beginnings of a simple but effective solution: including im-
ages with only adversarial backgrounds in the training set.
We successfully implemented this strategy with the MNIST
dataset, creating a model that outperforms a traditional clas-
sifier by 6.5% on natural inputs and at least 65.3% on all
attempted adversarial inputs.

Localized Adversarial Training
In this work, we train a classifier on images where only the
backgrounds are set adversarial in a careful way, in order to
improve robustness against adversarial attacks without sac-
rificing too much accuracy on natural inputs.

Algorithm 1 Localized Adversarial Training
1: n is a CNN; ε is the maximum value that any pixel

may legally change; attack describes which pixels may
legally change

2: repeat for each minibatch B in training data
3: repeat for each image in B
4: x← image
5: λ← PGD Attack (x, n) . Noise generated by

PGD attack
6: x′ ← x+ λ
7: epmatrix is initialized
8: epmatrix←Localize (epmatrix, ε, attack) .

Changes are localized
9: x′ clipped to within x+epmatrix, x-epmatrix

10: replace original image in B with x′
11: until every image in batch is altered
12: Train n on updated batch B
13: until training is complete

As described in Algorithm 1, localized adversarial train-
ing iterates through small batches of the training data, mak-
ing each image in each batch adversarial. For each image,
a PGD attack generates and adds adversarial perturbations.
Then, the attack is localized by creating a matrix of equal
size to the image, denoted as epmatrix, where each value is
ε if the corresponding pixel is altered, or zero otherwise. (In
the next Section, we will describe in detail the different lo-
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calized attacks we explored.) The adversarial image is then
clipped, to ensure that its distance from the original image
at any given pixel is no more than that pixel’s corresponding
value in the epsilon matrix (meaning that higher values of ε
allow more visible changes at those pixels). Finally, once all
the images in a batch are adversarial, the neural network is
updated and trained to recognize those images correctly.

Procedure
To test the robustness and accuracy of locally adversari-
ally trained models, we train 5 CNN classifiers to recognize
handwritten digits from the MNIST dataset. Each model
is trained with two convolutional layers, a fully connected
layer, and an output layer, and undergoes 100,000 steps
of training. The first model is a ”natural” model, which is
trained on unaltered MNIST images. The next four models
are trained on four different types of adversarial examples
generated by the following four attacks, which are also il-
lustrated by the four columns in Figure 1. Each attack is it-
erated over 100 steps, and ε is set to .3 for every pixel that is
allowed to change.

• A ”standard” PGD attack (Column 1 below) following
Madry et al.’s 2017 implementation (Madry et al. 2017)

• A general ”background” attack (Column 2) which leaves
the middle 36 pixels unaltered

• An ”exact mask” attack (Column 3), which does not alter
any pixel belonging to the digit itself

• A ”broad mask” attack (Column 4), where both the pixels
belonging to the digit and every pixel directly adjacent
remain unchanged

Figure 1: One standard and three localized PGD attacks

Results
Evaluating each of the five models on each of the four at-
tacks (plus natural inputs), yields a total of 25 evaluations
(Figure 2). The exact mask attack (which does not alter pix-
els in the digit itself) is quite effective, generating images
which were identified correctly by the natural model only
.08% of the time (compared to 99.19% on natural inputs).
This highlights the unnecessary sensitivity of CNN classi-
fiers to background changes. The experiment also confirms
the trade-off between accuracy and robustness for standard
adversarial training: while the model trained with the stan-
dard attack suffers at least 99% less loss than a naturally

trained model on various adversarial inputs, it suffers 39.8%
more loss on natural inputs.

For localized adversarial training, the model trained on
the broad mask attack outperformed the standard model on
both types of inputs (on natural inputs by 6.5% and on ad-
versarial inputs by between 65.3% and 99.7%.) The model
trained with the ”general background” attack had a similar
advantage, outperforming the natural model by 4.4% on nat-
ural inputs and at least 99% on all adversarial inputs. Figure
2 describes the loss of each model when tested on natural
inputs and each kind of adversarial input. Only the mod-
els which underwent localized adversarial training outper-
formed the ”natural” model on all inputs.

Figure 2: The cross entropy loss of each model on natural
inputs and each type of adversarial input. Loss on natural
inputs is scaled by 1000.

Conclusions
We implemented the first localized form of adversarial train-
ing, improving the robustness against adversarial examples
while maintaining state-of-the-art accuracy on natural in-
puts. We plan to extend our work on larger sets of more
complex images, to verify its effectiveness.
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