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Abstract
Latest developments in the field of power-efficient neural in-
terface circuits provide an excellent platform for applications
where power consumption is the primary concern. Develop-
ing neural networks to achieve pattern recognition on such
hardware remains a daunting task owing to substantial com-
putational complexity. We propose and demonstrate a Spik-
ing Neural Network (SNN) with biologically reasonable time
constants to implement basic Boolean Logic Gates. The same
network can be further applied to more complex problem
statements. We employ a frequency spike encoding for data
representation in the model, and a simplified and computa-
tionally efficient model of a neuron with exponential synapses
and Spike Timing Dependent Plasticity (STDP).

Introduction
Spiking Neural Networks (SNNs) (also called third gener-
ation of Artificial Neural Networks (ANNs)) are highly in-
spired by the Natural Computing in the brain. In contrast
to the standard ANNs which utilize integer or real-valued
inputs, SNNs process data in the form of series of very
short impulses or activation potentials, also known as spike
trains. A spike train is a single bit line switching temporally
between logical levels of ‘0’ and ‘1’. SNNs are therefore
known to incorporate spatial as well as temporal informa-
tion (Petrović 2013).

Electrical models provide an estimated imitation of a neu-
ron cell. The classic leaky integrate-and-fire (LIF) model
(Stoliar et al. 2017) and its generalized form, spike response
model (SRM) (Ourdighi and Benyettou 2016) are widely
used to represent neuron cells computationally. These mod-
els can be analyzed as analog components of charging and
discharging RC circuit which can be computationally com-
plex when expressed in digital systems. The SNN model pre-
sented in this paper is a feed-forward network. Hence the
output of a signal has a different weighted potential contri-
bution as it reaches to the last neuron. The input signal is
encoded as a spike train and supplied to the input neurons.

The main characteristic of a spiking neuron is the mem-
brane potential (MP). The transmission of a single spike
from one neuron to another is mediated by the point where
neurons interact. In neurobiology, a transmitting neuron is
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defined as a pre-synaptic neuron and a receiving neuron as a
post-synaptic neuron. With no activity, neurons have a small
electrical charge, known as the resting potential. When a sin-
gle spike arrives at a post-synaptic neuron, it generates an
excitatory post-synaptic potential (EPSP). The MP at an in-
stant is calculated as the sum of all present PSPs at the neu-
ron inputs. When the MP reaches a critical threshold value,
a post-synaptic spike is sent out. After a refractory period,
the neuron potential returns to its resting value and is ready
to fire a new spike if MP is above the threshold.

Spiking neurons do not fire at each propagation cycle but
only fire based on their membrane potential. The sum of in-
dividual spike trains generated by the pre-synaptic neurons
changes the membrane potential of post-synaptic neurons.

In this proposed model, we combine spike encoding, the
neuron membrane model, and the STDP learning. Since en-
ergy consumption is a significant cost factor, we use biolog-
ically plausible time constants and mechanism such as ex-
ponential synapse with STDP which can be easily used on
neural interface circuits (Benjamin et al. 2014). Researchers
(Reljan-Delaney and Wall 2017) have tried to model AND
gates with SNNs but the results were not good. However,
SNN gave good results for XOR problem. We propose that
using biologically plausible time constants, we can build an
SNN model for logical AND and OR gates efficiently. It was
seen that the proposed model can accurately represents both
the AND and OR gates.

Approach and Model
In the proposed Spiking Neural Network model STDP learn-
ing is employed where, there is a weight change if there is a
pre-synaptic spike in the temporal vicinity of a post-synaptic
spike. If the pre-synaptic spike occurs immediately before
the post-synaptic spike, then the change is positive. Other-
wise, the change is negative, as illustrated with the biological
data from (Bi and Poo 2001). Thus, our interest lies in this
temporal range only which induces a change in the synaptic
weights. In our network, each connection between the two
neurons is associated with a delay of d time units, which
is the time difference between the post-synaptic firing time
and the time the pre-synaptic potential starts rising. Since
the model is envisioned to be used in digital systems, time
is counted in discrete units. The membrane potential P (t) is
described as a function of time and is increased by a synap-
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tic weight value wi for each incoming spike. A constant
value D is subtracted from the membrane potential at every
time instant to take into account the delay of d time units.
When the membrane potential crosses the threshold poten-
tial (Pth), the neuron produces a spike and the membrane
potential decreases to the resting potential Pref , which is
the minimum potential level of a neuron. The process is de-
scribed by Equation 1. The resulting EPSP function can be
easily implemented with a register and a counter.

P (t) =


P (t− 1)+
n∑

i=1

wiSit −D, ifPmin < Pt−1 < Pth.

Pref , ifPt−1 ≥ Pth

Rp, ifP (t− 1) ≤ Pmin

(1)
Rp is the resting potential, i.e, the minimum potential at
which a neuron stays without any pre-synaptic spike input.
Prefract is numerically the same as Rp, but it signifies an
overloaded condition. This state occurs after a post-synaptic
spike has been fired. After firing the spike, the neuron again
returns to the minimum potential state. Pmin is the mini-
mum limit of the membrane potential. It is used to avoid any
negative polarization of the neuron. An exponential curve,
which is biologically more plausible with the neuromorphic
hardware systems, is used for STDP learning. Equation 2
describes the learning function, where the constants A+ and
A− determine the maximum excitation and inhibition val-
ues; and constants τp and τm determine the steepness of the
function. Equation 3 represents the weight change equations,
wherewmax andwmin bound the weights and α controls the
rate of weight change.

∆w =


A+exp(

−∆t

τp
), if∆t ≥ 0;

−A−exp(
−∆t

τm
), if∆t < 0

(2)

wnew =

{
wold + α∆w(wmax − wold), if∆w > 0.
wold + α∆w(wold − wmin), if∆w ≤ 0

(3)

Results and Discussion
A model of SNN is proposed to implement OR and AND
Boolean logic gates. Inputs to the network are rate coded us-
ing Poisson process spike generator. Random noise is added
to mimic natural biological scenarios and each synaptic ter-
minal is treated as a distinct connection with independent
weights. Biologically plausible parameters were used for
training and simulation (Jug 2012). The truth tables for OR
and AND gate obtained by the SNN model is given in Fig-
ure 1. A simulation for logical AND gate is shown in Figure
2 for different inputs. Other necessary figures and explana-
tions are given as supplementary files. From both the fig-
ures, it can be seen that post-synaptic spikes are only fired
when membrane potential crosses the threshold. The net-
work learned appropriate weights in just 100 iterations. Al-
gorithms were written from scratch in Python on a 64-bit OS
with 8 GB of RAM and an Intel i5-5200U processor.

Figure 1: Truth Tables Obtained for Different Inputs in the
Proposed SNN Model

Figure 2: A Simulation of the SNN Model for Logical AND
Gate

Conclusion
In this paper, we described a simple, biologically plausible
and computationally efficient architecture of a spiking neu-
ron network which is optimized for embedded system im-
plementations. Learning is robust and stable. In future, we
would like to implement the same biologically plausible and
power efficient SNN architecture for more complex pattern
recognition tasks and validate our results using them.
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