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Abstract

Generating a curriculum for guided learning involves subject-
ing the agent to easier goals first, and then gradually increas-
ing their difficulty. This work takes a similar direction and
proposes a dual curriculum scheme for solving robotic ma-
nipulation tasks with sparse rewards, called MaMiC. It in-
cludes a macro curriculum scheme which divides the task into
multiple subtasks followed by a micro curriculum scheme
which enables the agent to learn between such discovered
subtasks. We show how combining macro and micro cur-
riculum strategies help in overcoming major exploratory con-
straints considered in robot manipulation tasks without hav-
ing to engineer any complex rewards and also illustrate the
meaning and usage of the individual curricula. The perfor-
mance of such a scheme is analysed on the Fetch environ-
ments.

Introduction
Starting to learn for simpler tasks and then using the ac-
quired knowledge to learn progressively harder tasks is a
natural outcome of formulating a curriculum. Recently, cur-
riculum learning has been used to solve complex robotic
tasks such as in (Florensa et al. 2017), (Nair et al. 2017).
However, these approaches make the assumption that the
agent can be reset to any desired state, and also make use
of expert state action trajectories (Nair et al. 2017), which
are expensive to generate.

The proposed approach, MaMiC, introduces two
schemes, macro and micro curriculum, which can be
applied either individually or in combination. A micro
curriculum essentially generates increasingly complex
goals for the agent to achieve. For example, in learning to
push a block, initial goals will be generated very near to
the block and then slowly shifted to the desired location.
However, such a scheme is not sufficient if we need to solve
tasks which are more complex, such as ones which require
the agent to execute particular sequences of temporally
extended actions or sub policies. In order to put an object
in a drawer, it is not enough to guide the agent in learning
to put the object to the desired location, but also to open
the drawer first. It is only when a particular sequence is
followed that we refer to the task as completed. A macro
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curriculum helps in identifying such a sequence and allows
the micro scheme to learn in between important subgoals
of such a sequence. The policy starts from a sub-goal and
proceeds to the next sub-goal, evolving in the process,
ultimately reaching the desired goal. Two ideas are
at the core of this technique, of being able to discover the
subgoals and of learning between the recognized sub-goals.
Moreover, the Q function Q(s, a, g) and the policy π(st, gt)
are explicitly parametrized by the goal in order to aid
learning in sparse reward settings.

Micro Curriculum
A micro curriculum tries to alleviate the above mentioned
assumption of being able to start some trajectories from
favourable states. We believe that starting at a particular state
should be based on the environment’s choice but not the
agent’s. We propose replacing all or some transition sam-
ple goals with micro goals, which are artificially gen-
erated, using any generative modelling technique. Using an
off policy RL algorithm allows us to replace sampled tran-
sition goals from the buffer with micro goals during
learning. The goals are generated such that they are initially
close to the achieved states at the end of each trajectory (i.e.
the achieved goal distribution) and slowly shift to be-
ing closer to the actual or desired goal distribution of
the task in hand. Since this procedure involves learning a
mapping between goals and actions, eventually the agent is
able to generalize well for the actual goal distribution. We
relate this with curriculum learning because the agent ini-
tially learns for a goal distribution much simpler to learn
i.e. the achieved goal distribution and then continues
learning for increasingly difficult goals, leveraging the pre-
viously learned skills. To train the goal generator, we mod-
ify the formulation used by (Held et al. 2017), by incorpo-
rating an additional parameter α ε [0, 1] which governs the
resemblance of the generated distribution to the achieved
goal distribution and the actual or desired goal distri-
bution. α = 0 forces the generator to produce goals similar
to the currently achieved states, while α = 1 produces goals
similar to the actual distribution. The exact objective func-
tion is given below.

minDV (D) = Eg∼pdata(g)
[(1− α) (D(gachieved)− 1)2+

α (D(gdesired)− 1)2] + Ez∼pz(z)[D(G(z))2]
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minG V (G) = Ez∼pz(z)[(D(G(z)) − 1)2]

,where D denotes the discriminator network, G the gen-
erator network, and V the GAN value function.

Strategy for Goal Sampling For replacing goals by sam-
pling new ones, we consider different strategies such as hav-
ing a mixture of HER goals (Andrychowicz et al. 2017)
and micro goals (referred to as micro-g), only having
micro goals and having a mixture of HER goals and
desired goals (referred to as micro-sg).

Macro Curriculum
We consider long horizon tasks and assume that few demon-
stration state trajectories τ = s0, s1, ...sT are available for
the given tasks. Using these demonstration state trajectories,
we wish to extract useful subgoals of the task. The dense
reward ||gachieved − gdesired||2 per time step for a demon-
stration is used as the signal for subgoal extraction. The in-
tuition for finding a good sub-goal in a typical manipulation
task is to observe that there is a sudden change in the dy-
namics of the system. For example, if the robot is trying to
push a block, it can be easily seen that once the robot ex-
plores and starts to interact with the block, the policy will
differ as the block interaction dynamics also affect the re-
ward now. For demonstration trajectories, we observe that
the gradient ratio of the dense reward always results in con-
sistent spikes near the object’s position, proving that it is a
good subgoal for learning the tasks such as pushing a block.
Additional information is provided in the Appendix (Sec 5).
Learning between two such subgoals can be performed
by following a micro curriculum scheme detailed above. The
extracted subgoals form a set of states that are achieved
by most of the sampled expert trajectories. Note that these
subgoals are dependent on the start state. Given a policy
π(st, sgt+1) that has learnt to achieve a subgoal sgt allows
the agent to achieve the next subgoal sgt+1.

Experiments and Results
Push-hard, Slide-hard, Pick and Place Tasks We con-
sider variants of the pushing, sliding and pick and place tasks
for a 7 DOF Fetch robot simulation. These experiments are
performed by using micro curriculum for both micro-g and
micro-sg sampling strategies.

Receptor-PickAndPlace Task We introduce a new task
setting called Receptor-PickAndPlace which comprises of
an object placed on a table, a receptor site on the table, and
a target located in the air. The agent is required to pick and
place the object at the target, which gets activated only if the
object passes through the receptor site. Therefore, the agent
is not rewarded even if the object is successfully placed at
the target, if it does not pass from the receptor site. Such a
task is extremely difficult to solve because of sequence of ac-
tions involved and a sparse reward available. We show how
combining the macro and micro schemes can solve this task,
by 1) leveraging demonstration states to extract a subgoal
near the receptor and 2) using a powerful micro scheme to

realize the sequencing of tasks involved, i.e. first moving the
block to the receptor and then to the target. Median success
rates for all tasks are shown in the table below.

Task Micro-sg Micro-g HER MaMiC
Push-hard 100% 92% 1% -
Slide-hard 42% 31% 1% -

PickAndPlace 98% 95% 0% -
Receptor-
PickPlace

2% 1% 0% 98%

Results We are able to learn successful policies for all four
tasks. For push-hard and slide-hard tasks, the HER base-
line does not even learn to reach the object. This can be at-
tributed to a mismatch in the kind of goals provided to the
parametrized policy and the ones on which the agent learns
off-policy. For Pick and Place, since the goal is always in the
air and the object always on the table, a similar mismatch is
conceivable. For the Receptor-PickAndPlace task, recogniz-
ing the receptor as a subgoal is crucial to learning. There is
a significant peak in the dense reward gradient around the
receptor location, proving that the subgoal extraction in the
macro scheme is able to leverage demonstrations efficiently.
This when combined with a micro scheme is able to learn the
sequence of going to the receptor first with the block, thus
activating the target, followed by placing it over the target.
HER and micro scheme applied individually fail to learn this
task. We present ablation studies in the Appendix (Sec 7).

Conclusion
We introduce a dual curriculum scheme for robotic manip-
ulation which aids in exploration in tasks with very sparse
rewards. We show how the micro scheme is a powerful
method for generating goals intelligently and can allow
solving hard variants of the pushing, sliding and pick and
place tasks without resetting to arbitrary states, starting from
favourable states or using expert actions. Moreover, through
the Receptor-PickandPlace task, we emphasize on the need
for a macro scheme combined with micro when a task in-
volves completing subtasks sequentially.
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