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Abstract

In this paper, we propose a Visual Center Adaptation Method
(VCAM) to address the domain shift problem in zero-shot
learning. For the seen classes in the training data, VCAM
builds an embedding space by learning the mapping from se-
mantic space to some visual centers. While for unseen classes
in the test data, the construction of embedding space is con-
strained by a symmetric Chamfer-distance term, aiming to
adapt the distribution of the synthetic visual centers to that
of the real cluster centers. Therefore the learned embedding
space can generalize the unseen classes well. Experiments on
two widely used datasets demonstrate that our model signifi-
cantly outperforms state-of-the-art methods.

Introduction
Remarkable success has been achieved by deep neural net-
works for visual object recognition on domains where a
large number of labeled training data is available. Neverthe-
less, annotating sufficient data is labor-intensive and time-
consuming, establishing significant barriers for adapting the
learned systems to new domains. To tackle this problem,
zero-shot learning (ZSL) has been proposed, which aims to
learn recognition models for novel classes without labeled
data. Generally, the ZSL approaches can be categorized into
two types based on the usage of unlabeled data: inductive
ZSL and transductive ZSL. In this paper, we focus on the
ZSL with transductive setting in which the unlabeled (tar-
get) images from the target classes are available.

Despite the effectiveness of previous studies, ZSL is still
challenged by the domain shift problem in practice. The
source and target classes in ZSL are usually disjoint and
even completely unrelated. In this case, applying naive pro-
jection function learned from source classes to target classes
without any adaptation may lead to a large knowledge gap.

We propose a novel Visual Center Adaptation Method
(VCAM) for ZSL. Inspired by (Zhang, Xiang, and Gong
2017), VCAM tries to project semantic information to the
visual space to tackle the hubness problem (more details in
supplementary file). To address the domain shift problem,
we add a novel symmetric Chamfer-distance constraint to
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Figure 1: The illustration of the proposed visual center adap-
tation method.

the learning of projection function in VCAM, which aims
to perform structure alignment on target classes, more spe-
cially, to adapt the synthetic visual centers obtained using
the learned projection function to the real cluster visual cen-
ters. By maintaining the structure of target classes during
the learning of projection on source samples, our model is
endowed with a much better generalization ability, which fi-
nally leads to the improvement of ZSL.

Our Methodology
Problem Definition We have Ns labeled source samples
Ds ≡ {(xsi , ysi )}Ns

i=1, where xsi is an image and ysi ∈ Ys =
{1, . . . , S} is the corresponding label. We are also given Nu

unlabeled target samples Du ≡ {(xui }Nu
i=1 that are from tar-

get classesYu = {S+1, . . . , U}. The goal of ZSL is to build
a recognition model that can predict the label yui ∈ Yu given
xui with no labeled training data for target classes. Here, each
class z ∈ Ys ∪ Yu is associated with the pre-defined auxil-
iary attributes az ∈ A forming a semantic space. Note that
we have Ys ∩ Yu = ∅ according to the definition of ZSL.

Visual Center Adaptation Method Our VCAM is il-
lustrated in Figure 1. Given the input image x, we use a
CNN feature extractor φ(·) to convert each image into a
d-dimensional image representation φ(x) ∈ Rd×1. Moti-
vated by the fact that the image features φ(x) of samples
could form tight and disjoint clusters (Zhang and Saligrama
2016), we argue that each class should have a real visual
center which is defined as the mean of all feature vectors in
the corresponding class. Based on it, an embedding subnet
is adopted to transfer the semantic attributes to these centers
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of the corresponding class:

csyn = σ2(wT
2 σ1(wT

1 a)) (1)

where a denotes the auxiliary attributes of each class. σ1(·)
and σ2(·) denote non-linear operation (i.e., Leaky ReLU).
w1 andw2 are the weights to be learned. csyn is the predicted
center for each category. To obtain the projection relation,
we adopt the mean square error as the loss function, which
minimizes the discrepancy between predicted centers csyn
and real centers c in the visual feature space for seen class:

LMSE =
1

S

S∑
i=1

‖csyni − ci‖22 + λΨ(w1, w2) (2)

where Ψ(·) is the l2-norm parameter regularizer decreasing
the model complexity, λ controls the tightness of the con-
straint and we empirically set λ = 0.0005.

During the testing phase, we first use Equation 1 to get
synthetic center Csyn

u for target classes from their semantic
attributes. Then for each image xi, its classification result
can be achieved by selecting the nearest synthetic center for
it. Formally,

su∗ = argmin
csyn
u

‖φ(xi)− csynu ‖2 (3)

However, in fact there is still discrepancy between csyn
and real centers for target classes while testing, i.e., do-
main shift problem, which will result in bad ZSL accuracy.
To alleviate this problem, it is necessary to align the struc-
ture of the synthetic centers with that of the real centers
for target class. Here, we use the class centers calculated
by K-means to approximate the real centers. A symmetric
Chamfer-distance constraint is proposed to measure the sim-
ilarity between the two unordered high-dimensional point
sets:

LCD =
∑

x∈Csyn
u

min
y∈Cclu

u

‖x− y‖22+
∑

y∈Cclu
u

min
x∈Csyn

u

‖x− y‖22 (4)

where Cclu
u indicates the cluster centers of target class ob-

tained by K-means algorithm. Csyn
u represents the synthetic

target centers obtained with the learned projection. Com-
bining the above constraint, the final loss function to train
VCAM is defined as:

LV CAM = LMSE + β × LCD (5)

where β controls the effect of these two objectives and we
set to β = 0.0005 empirically.

Experiments
Datasets
We evaluate the effectiveness of the proposed VCAM on two
representative ZSL benchmarks: Animals with Attributes2
(AwA2) and Caltech-UCSD Birds 200-2011 (CUB). AwA2
contains 37,322 images from 50 animals categories, where
40 of 50 classes are used for training and the rest are used for
testing. For fair comparison with baseline methods, we also
report the results on AwA1 that is an old version of animal
datasets of ZSL without raw images. CUB is a fine-grained

AwA1 AwA2 CUB
Method SS PS SS PS SS PS

SJE(2015) 76.7 65.6 69.5 61.9 55.3 53.9
SYNC(2016) 72.2 54.0 71.2 46.6 54.1 55.6
SCoRe(2017) 82.8 - - 69.5 59.5 61.0
LDF(2018) 83.4 65.8 - - 70.3 69.2

δ

SE-ZSL(2018) 83.8 69.5 80.8 69.2 60.3 59.6
UDA(2015) 73.2 - - - 39.5 -
TMV(2015) 80.5 - - - 51.2 -
SMS(2016) 78.4 - - - 59.2 -µ

TSTD(2017) 90.3 - - - 58.2 -
VCAM(ours) 94.3 77.6 93.9 78.2 74.2 71.7

Table 1: The experimental results in terms of MCA (%).
Here, δ denotes inductive ZSL algorithm, µ denotes trans-
ductive ZSL algorithm, and ”-” means no repeated result
available yet.

dataset with 200 different bird species and 11,788 images.
We use 150 classes as training data and the rest 50 classes
are used for testing. We also adopt the same ZSL data splits
as used in (Xian, Schiele, and Akata 2017), called PS. We
report the results on both the standard splits (SS) and the PS
for fair comparison.

Experimental Results
Following previous work (Li et al. 2018), the multi-way
classification accuracy (MCA) is adopted as our evaluation
metric. We summarize the experimental results in Table 1.
Compared to the previous approaches, our method achieves
significant improvements on all the experimental datasets,
verifying the effectiveness of VCAM. For example, VCAM
outperforms the best results of baseline methods by a margin
of 2% ∼ 13%.

We also conduct challenging experiments in the general-
ized ZSL settings (gZSL) where the larger searching space is
provided for testing to verify the effectiveness of our model
in dealing with the domain shift problem in ZSL. In addi-
tion, we also visualize parts of the zero-shot classification
results. Both the gZSL and visualization results are included
in supplementary file.

Conclusion
In this paper, we have proposed a novel visual center adap-
tation method for zero-shot learning, which is based on the
adaptation of visual centers to solve domain shift problem.
Experiments show that VCAM outperforms other state-of-
the-art methods on two representative datasets.
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