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Abstract

Extracting saliency maps, which indicate parts of the image
important to classification, requires many tricks to achieve
satisfactory performance when using classifier-dependent
methods. Instead, we propose classifier-agnostic saliency
map extraction. This allows to find all parts of the image that
any classifier could use, not just one given in advance. This
way we extract much higher quality saliency maps.

Introduction
The success of deep convolutional networks for large-scale
object recognition (Simonyan and Zisserman 2014; He et al.
2016) has spurred interest in utilizing them to automatically
detect and localize objects in natural images. It has been
demonstrated that the gradient of the class-specific score of
a given classifier could be used for extracting a saliency map
of an image (Simonyan, Vedaldi, and Zisserman 2013). Such
classifier-dependent saliency maps can be utilized to analyze
inner working of a specific network. However, these are not
identifying all “evidence” in a given image because only the
part of the image that is used by a given model is highlighted.

In this work, we aim at finding saliency maps indicating
pixels which aids classification, i.e. we want to find pixels
in the input image such that if they were masked, it would
confuse an unknown classifier. Assuming we were given a
classifier, a naive approach would be to train a generative
model to output a mask (a saliency map) confusing that clas-
sifier. That can be achieved using a simple GAN-like ap-
proach (Goodfellow et al. 2014) where the classifier acts as
a fixed discriminator. Unfortunately, as we prove experimen-
tally, this solution suffers from the same issues as prior ap-
proaches. We argue that the strong dependence on a given
classifier lies at the center of the problem. To tackle this
directly we propose to train a saliency mapping that is not
strongly coupled with any specific classifier.

We qualitatively find that the proposed approach ex-
tracts higher quality saliency maps compared to classifier-
dependent methods, as can be seen in Fig. 1. Extracted
saliency maps show all the evidence without using any
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(a) CASM (Ours) (b) Baseline

Figure 1: The original images are in the first row. In the
following rows masked-in images, masked-out images and
inpainted masked-out images are shown, respectively. The
proposed approach remove all relevant pixels and hence the
inpainted images show the background only.

symptom-masking methods such as total variation regular-
ization. We also evaluate our method quantitatively by us-
ing the extracted saliency maps for object localization. We
observe that the proposed approach outperforms the exist-
ing weakly-supervised techniques setting new state-of-the
art on ImageNet dataset and closely approaches the local-
ization performance of a strongly supervised model.

Our method has many potential applications, in which
being classifier-agnostic is of primary importance. For in-
stance, in medical image analysis, where we are interested
not only in class prediction but also in indicating which part
of the image is important to classification. Importantly, it is
criticial to indicate all parts of the image, which can influ-
ence diagnosis, not just ones used by a specific classifier.

Classifier-agnostic saliency map extraction
We tackle a problem of extracting a salient region of an im-
age as a problem of extracting a mapping m : RW×H×3 →
[0, 1]

W×H over an input image x ∈ RW×H×3. Such a
mapping should retain (=1) any pixel of the input image if
it aids classification, while it should mask (=0) any other
pixel. Earlier work has largely focused on a setting in which
a classifier f was given. These approaches can be imple-
mented as finding m = argmaxm′ S(m

′, f), where S
is a score function corresponding to a classification loss,
i.e., S(m, f) = 1

N

∑N
n=1 l(f((1 − m(xn)) � xn), yn) +

R(m), where � denotes a masking operation, R(m) is a
regularization term and l is a per example classification
loss, such as cross-entropy. We are given a training set
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Algorithm 1: Classifier-agnostic saliency map extraction

input : an initial classifier f (0) parameterized by θf ,
an initial mapping m(0) parameterized by θm,
dataset D, learning rates ηf and ηm,
number of iterations K

output: the final mapping m(K)

Initialize a sample set F (0) =
{
f (0)

}
.

for k ← 1 to K do
θf(k) ← θf(k−1) − ηf∇θfS(m

(k−1), f (k−1))

f ′ ← Sample(
{
f (0), f (1), . . . , f (k)

}
)

θm(k) ← θm(k−1) + ηm∇θmS(m(k−1), f ′)

D = {(x1, y1), . . . , (xN , yN )}. This optimization proce-
dure could be interpreted as finding a mapping m that max-
imally confuses the given classifier f . We refer to it as a
classifier-dependent saliency map extraction.

We propose to consider not only a single fixed classifier
but all possible classifiers weighted by their posterior proba-
bilities. That is, now m = argmaxm′ Ef [S(m

′, f)], where
the posterior, p(f |D,m), is defined to be proportional to the
exponentiated classification loss on masked images. Solving
this optimization problem is equivalent to searching over the
space of all possible classifiers, and finding a mapping m
that works with all of them. We call the proposed approach
a classifier-agnostic saliency map extraction.

Finding m as defined above is, unfortunately, generally
intractable. This arises from the intractable expectation over
the posterior distribution. Thus, we solve this problem ap-
proximately, as presented in Alg. 1, using the fact that
stochastic gradient descent performs approximate Bayesian
posterior inference (Welling and Teh 2011; Mandt, Hoff-
man, and Blei 2017). Note that our algorithm resembles the
training procedure of GANs, where mapping m takes the
role of a generator and the classifier f (and all its previous
iterations) can be understood as a discriminator. Mapping m
and the classifier f are trained simultaneously. See the offi-
cial implementation or full paper for the training procedure
details (https://github.com/kondiz/casme).

Experiments
Our models were trained on the official ImageNet training
set with ground truth class labels. We use ResNet-50 (He et
al. 2016) as a classifier f in our experiments. We follow an
encoder-decoder architecture for constructing a mapping m.
The encoder is implemented also as a ResNet-50.

We use the abbreviation CASM (classifier-agnostic
saliency mapping) to denote the final model obtained using
the proposed method. Our baseline model (Baseline) is of
the same architecture but it is trained with a fixed classi-
fier. We visualize the learned mapping m by inspecting the
saliency map of each image in three different ways. We con-
sider the masked-in image m(x) � x, which ideally leaves
only the relevant pixels visible, and the masked-out image
(1−m(x))�x, which highlights pixels irrelevant to classifi-
cation. We also visualize the inpainted masked-out image

Model ↓
Baseline 53.5
CASM (ours) 36.1

ALN (Fan, Zhao, and Ermon 2017) 43.5
Mask (Fong and Vedaldi 2017) 43.1
Grad (Simonyan, Vedaldi, and Zisserman 2013) 41.7
Masking model (Dabkowski and Gal 2017) 36.7

Supervised:
VGG Net (Simonyan and Zisserman 2014) 34.3

Table 1: Localization task results.

using an inpainting algorithm (Telea 2004). This allows us to
inspect whether the object that should be masked out cannot
be easily reconstructed from nearby pixels (see Figure 1).

We also evaluate our method quantitatively by using the
extracted saliency maps for object localization (ILSVRC’14
localization task). We report the performance of CASM,
Baseline and prior works in Table 1 using the most widely
used metric (Fong and Vedaldi 2017). Most of the ex-
isting approaches, except for ALN (Fan, Zhao, and Er-
mon 2017), assume the knowledge of the target class, un-
like the proposed approach. The table clearly shows that
CASM performs better than all prior approaches including
the classifier-dependent Baseline. The fully supervised ap-
proach is the only approach that outperforms CASM.
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