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Abstract

The ability to select an appropriate story ending is the first
step towards perfect narrative comprehension. Story ending
prediction requires not only the explicit clues within the con-
text, but also the implicit knowledge (such as commonsense)
to construct a reasonable and consistent story. However, most
previous approaches do not explicitly use background com-
monsense knowledge. We present a neural story ending selec-
tion model that integrates three types of information: narra-
tive sequence, sentiment evolution and commonsense knowl-
edge. Experiments show that our model outperforms state-of-
the-art approaches on a public dataset, ROCStory Cloze Task
(Mostafazadeh et al. 2017), and the performance gain from
adding the additional commonsense knowledge is significant.

Introduction
Narrative is a fundamental form of representation in human
language and culture. Stories connect individuals and de-
liver experience, emotions and knowledge. Narrative com-
prehension has attracted long-standing interests in natural
language processing (Schubert and Hwang 2000), and is
widely applicable to areas such as content creation. Enabling
machines to understand narrative is also an important first
step towards real intelligence. Previous studies on narrative
comprehension include character roles identification (Valls-
Vargas, Ontañón, and Zhu 2015), narratives schema con-
struction (Chambers and Jurafsky 2009), and plot pattern
identification (Jockers 2013). However, their main focus is
on analyzing the stories themselves. In contrast, we con-
centrate on training machines to predict the end of the sto-
ries. Story completion tasks rely not only on the logic of the
story itself, but also requires implicit commonsense knowl-
edge outside the story. To understand stories, human can use
the information from both the story itself and other implicit
sources such as commonsense knowledge and normative so-
cial behaviors. In this paper, we propose to imitate such be-
haviors to incorporate structured commonsense knowledge
to aid the story ending prediction.

Recently, (Mostafazadeh et al. 2017) introduced a ROC-
Stories dataset as a benchmark for evaluating models’ abil-
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(a) An example story

(b) Clues in ConceptNet

Figure 1: (a) shows an example story from ROCStories
dataset, words in colors are key-words. (b) shows the key-
words and their relations in ConceptNet Knowledge Graph

ity to understand the narrative structures of a story, where
the model is asked to select the correct ending from two
candidates for a given story. To solve this task, both tradi-
tional machine learning approaches (Schwartz et al. 2017)
and neural network models (Cai, Tu, and Gimpel 2017) have
been used. Some works also exploit information such as sen-
timent and topic words (Chaturvedi et al. 2017) and event
frames (Li et al. 2018). Recently, there has been work (Rad-
ford et al. 2018) that leverages large unlabeled corpus, like
the BooksCorpus (Zhu et al. 2015) dataset, to improve the
performance. However, none of them explicitly uses struc-
tured commonsense knowledge, which humans would natu-
rally incorporate to improve model performance.

Figure 1(a) shows a typical example in ROCStories
dataset: a story about Dan and his parents. The blue words
are key-words in the body of the story, and the red word is
the key-word in the correct story ending. Figure 1(b) shows
the (implicit) relations among these key-words, which are
obtained as a subgraph from ConceptNet (Speer, Chin, and
Havasi 2017), a commonsense knowledge base. By incor-
porating such structured external commonsense knowledge,
we are able to discover strong associations between these
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Figure 2: Our proposed model architecture. The inputs: S1 through S4 denote the story body, and ei (i = 1, 2) denotes two
candidate endings. The bottom-left component encodes sentiment evolution information (green), the top-left component models
the narrative sequence (yellow), and the top-right component integrates commonsense knowledge (blue). The combination gate
in the bottom-right integrates all three types of information and outputs the probability on which ending is correct.

keywords and correctly predict the story ending. Note that
these associations are not available from the story itself.

To solve the story completion task, we propose a neu-
ral network model that integrates three types of informa-
tion: (i) narrative sequence, (ii) sentiment evolution, and
(iii) commonsense knowledge. The clues in narrative chain
are captured by a transformer decoder, constructed from a
pretrained language model. The sentiment prediction is ob-
tained by using a LSTM model. Additionally, the common-
sense knowledge is extracted from an existing structured
knowledge base, ConceptNet. In particular, we use a com-
bination gate to integrate all the information and train the
model in an end-to-end manner. Experiments demonstrate
the improved performance of our model on the task.

Related Work
Our work on story completion is closely related to several re-
search areas such as reading comprehension, sentiment anal-
ysis and commonsense knowledge integration, which will be
briefly reviewed as below.

Reading Comprehension is the ability to process text,
understand its meaning, and to integrate it with what the
readers already know. It has been an important field in NLP
for a long time. The SQuAD dataset (Rajpurkar, Jia, and
Liang 2018) presents a task to locate the correct answer to
a question in a context document and recognizes unanswer-
able questions. The RACE dataset (Lai et al. 2017), which is
constructed from Chinese Students English Examination, in-
troduces another task that requires not only retrieval but also
reasoning. Usually they are solved by match-based model
like QANET (Yu et al. 2018), hierarchical attention model
like HAF (Zhu et al. 2018), and dynamic fusion based model
like DFN (Xu et al. 2017). Also there exists more relevant re-
search on story comprehension such as event understanding
of narrative plots (Chambers and Jurafsky 2009) and char-
acter personas (Valls-Vargas, Ontañón, and Zhu 2015).

Sentiment Analysis aims to determine the attitude of a
speaker (or a writer) with respect to some topic, the overall
contextual polarity, or emotional reaction to a document, in-
teraction or event. There have been rich studies on this field,
such as learning word vectors for sentiment analysis (Maas
et al. 2011) and recognizing contextual polarity in a phrase-
level (Wilson, Wiebe, and Hoffmann 2005). Recently, re-
searchers studied large-scale sentiment analysis across news
and blogs (Godbole, Srinivasaiah, and Skiena 2007), and
also studied opinion mining on twitter (Patodkar and Sheikh
2010). Additionally, there have been studies focused on joint
learning for better performance, such as detecting sentiment
and topic simultaneously from text (Lin and He 2009).

Commonsense Knowledge Integration If machines re-
ceive information from a commonsense knowledge base,
they become more powerful for many tasks like reasoning
(Bagherinezhad et al. 2016), dialogue generation (Liu et al.
2018) and cloze style reading comprehension (Mihaylov and
Frank 2018). Related works include (Bagherinezhad et al.
2016), which builds a knowledge graph and uses it to deduce
the size of objects (Bagherinezhad et al. 2016), in addiiton to
(Zhu et al. 2017), in which a music knowledge graph is built
for a single round dialogue system. There are several ways
to incorporate external knowledge base (e.g., ConceptNet).
For example, (Speer and Lowry-Duda 2017) uses a knowl-
edge based word embedding, (Young et al. 2017) employs
tri-LSTMs to encode the knowledge triple, and (Zhou et al.
2018) and (Mihaylov and Frank 2018) apply graph attention
embedding to encode sub-graphs from a knowledge base.
However, their work does not involve narrative completion.

Story Completion Traditional machine learning meth-
ods have been used to solve ROCStory Cloze Task such as
(Schwartz et al. 2017). To improve the performance, features
like topic words and sentiment score are also extracted and
incorporated (Chaturvedi et al. 2017). Neural network mod-
els have also been applied to this task (e.g., (Huang et al.
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2013) and (Cai, Tu, and Gimpel 2017)), which use LSTM to
encode different parts of the story and calculate their simi-
larities. In addition, (Li et al. 2018) introduces event frame
to their model and leverages five different embeddings. Fi-
nally, (Radford et al. 2018) develops a transformer model
and achieves state-of-the-art performance on ROCStories,
where the transformer was pretrained on BooksCorpus (a
large unlabeled corpus) and finetuned on ROCStories.

Proposed Model
For a given story S = {s1, s2, ..., sL} consisting of a se-
quence of L sentences, our task is to select the correct end-
ing out of two candidates, e1 and e2, so that the completed
story is reasonable and consistent. On the face of it, the
problem can be understood as a standard binary classifica-
tion problem. However, learning binary classifier with stan-
dard NLP techniques on the explicit information in the story
is not sufficient. This is because correctly predicting the
story ending usually requires reasoning with implicit com-
monsense knowledge. Therefore, we develop a neural net-
work model to predict the story ending by integrating three
sources of information: narrative sequence, sentiment evolu-
tion and structured commonsense knowledge (see Figure 2).
Note that the first two types of information are explicit in the
story while the third type is implicit and has to be imported
from external source such as a knowledge base. In this sec-
tion, we will explain how we exploit these three information
sources and integrate them to make the final prediction.

Narrative Sequence
To describe a consistent story, plots should be planned in a
logically reasonable sequence; that is there should be a nar-
rative chain between different characters in the story. This
is illustrated in the example in Figure 3, where words in
red are events and words in blue are characters. The story
chain, “Agatha wanted pet birds → Agatha purchased pet
finches → Agatha couldn’t stand noise → mess was worse
→ Agatha return pet birds”, describes a more coherent and
reasonable story than “ Agatha wanted pet birds→ Agatha
purchased pet finches → Agatha couldn’t stand noise →
mess was worse → Agatha buy two more”. When Agatha
could not stand the noise, it is more likely for her to give
these birds away rather than buy more. Therefore, develop-
ing a better semantic representation for narrative chains is
important for us to predict the right endings.

Inspired by the recent research from OpenAI (Radford et
al. 2018) on forming semantic representations of narrative
sequences, we first pre-train a high-capacity language model
on a large unlabeled corpus of text to learn the general infor-
mation hidden in the context, and then fine-tune the model
on this story completion task.

Given a large corpus of tokens C = {c1, c2, ..., cn}, we
can pre-train a language model to maximize the likelihood :

Llm(C) =
∑
i

logPl(ci|ci−k, ..., ci−1; θ) (1)

where k is the window size, and the conditional probability
Pl is modeled using a neural network with parameters θ.

Figure 3: An example story in the ROCStories dataset

Similar to (Radford et al. 2018), we use a multi-layer
transformer decoder with multi-headed self-attention for the
language model:

h0 = CWe +Wp (2)
hl = transformer(hl−1), l ∈ [1,M ] (3)

P (c) = softmax(hMW
T
e ) (4)

where C = {c1, c2, ..., cn} are tokens in corpus, We is the
token embedding matrix, Wp is the position embedding ma-
trix and M is the number of transformer blocks.

We use the pre-trained parameters released by OpenAI 1

as the initialization for the transformer decoder. We adapt
these parameters to our classification task. For each candi-
date story (s1, s2, s3, s4, ei) (i.e., the story body followed
by one candidate ending), we serialize it into a sequence of
tokens X = {x1, ..., xk}, where k is the number of tokens.
Then the fine-tuned transformer takesX as its input and out-
puts the probability of ei being the correct ending:

PN (y|s1, ..., s4, ei) = softmax(WMh
k
M + bM ) (5)

where y ∈ {0, 1} is the label indicating whether ei is the
correct ending, hkM denotes the hidden representation at the
M -th layer of the transformer associated with the k-th token,
and WM and bM are parameters in the linear output layer.

Sentiment Evolution
Besides narrative sequence, getting a good sentiment pre-
diction model is also important for choosing the correct end-
ings. Note that stories are different from other objective texts
(e.g., news), as they have emotions within the context. Usu-
ally there is a sentiment evolution when a storyline is being
revealed (Vonnegut 1981) .

First, we pre-train a sentiment prediction model using
the training set of the ROCStories, which does not have al-
ternative endings (i.e., no negative samples). Given a five-
sentence story S = {s1, s2, s3, s4, s5}, we take the first four
sentences as the body B and the last sentence as the end-
ing e. We extract the sentiment polarity of each sentence
by utilizing a lexicon and rule-based sentiment analysis tool
(VADER) (Hutto and Gilbert 2014):

Ei = VADER(si), i ∈ [1, 5] (6)

where Ei is a vector of three elements including probabili-
ties of the i-th sentence being positive, negative and neutral.

1https://github.com/openai/finetune-transformer-lm
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Then, we use a Long Short-Term Memory (LSTM) neu-
ral network to encode the sentence sentiments Ei with its
context into the hidden state hi, which summarizes the con-
textual sentiment information around the sentence si. And
we use the last hidden state h4 to predict the sentiment vec-
tor Ep in the ending e:

hi = LSTM(Ei, hi−1), i ∈ [1, 4] (7)
Ep = softmax(Weh4 + be) (8)

We train the sentiment model by maximizing the cosine
similarity between the predicted sentiment vectorEp and the
sentiment vector E5 of the correct ending:

sim(S) =
Ep · E5

‖Ep‖2 · ‖E5‖2
(9)

Afterwards, we adapt the parameters to the story ending se-
lection task and calculate the following conditional proba-
bility PS :

PS(y|s1, ..., s4, ei) = softmax(EpWsEe) (10)

where S = {s1, s2, s3, s4} is the body, ei is the candidate
ending, Ep is the predicted sentiment vector, Ee is the sen-
timent vector extracted from ending ei, and Ws is the simi-
larity matrix to be learned.

Commonsense Knowledge
Narrative sequence and sentiment evolution, though useful,
are not sufficient to make correct predictions. In a typical
story, newly introduced key-words may not be explained in
the story because story-writers are not given enough narra-
tive space and time to develop and describe them (Martin
and George 2000). In fact, there are many hidden relation-
ships among key-words in natural stories. In Figure 1 (a), al-
though the key-word “diet” in the ending is not mentioned in
the body, there are hidden relationships among “diet”, “over-
weight” and “unhealthy” as shown in Figure 1 (b). When this
kind of implicit information is uncovered in the model, it is
easier to predict the correct story ending.

We leverage the implicit knowledge by using a num-
berbatch word embedding (Speer, Chin, and Havasi 2017),
which is trained on data from ConceptNet, word2vec,
GloVe, and OpenSubtitles. The numberbatch achieves good
performance on tasks related to commonsense knowledge
(Speer and Lowry-Duda 2017). For instance, the cosine sim-
ilarity between “diet” and “overweight” in numberbatch is
0.453, but it is 0.326 in GloVe. This is because numberbatch
makes use of the relationship between them as shown in Fig-
ure 1 (b) while GloVe does not.

Given the body S = {s1, s2, s3, s4}, a candidate ending
ei and the label y, we tokenize each sentence using NLTK
and Standford’s CoreNLP tools (Manning et al. 2014). Af-
ter deleting the stop words, we calculate the knowledge dis-
tance vector D between the candidate ending and the body
by Algorithm 1. We compute the similarity between two
key-words using the cosine similarity of their vector space
representations in numberbatch. For each sentence si in the
body, we then quantify the distance with the ending using
averaged alignment score of every key-word in the ending.

Algorithm 1 Knowledge distance computation

1: for all sentence sj such that sj ∈ S do
2: distancej = 0
3: num = 0
4: for all word w such that w ∈ ei do
5: maxd = 0
6: num+ = 1
7: for all word u such that u ∈ sj do
8: if stem(w)! = stem(u) then
9: d = cosine similarity(w, u)

10: if d > maxd then maxd = d
11: end if
12: end if
13: end for
14: distancej+ = maxd
15: end for
16: distancej/ = num
17: end for
18: return (distance1, ..., distance4)

Then we use a linear layer to model the conditional proba-
bility PC :

PC(y|s1, ..., s4, ei) = softmax(WdD + bd) (11)

where Wd and bd are parameters in the linear output layer,
and D is the four-dimensional distance vector.

Combination Gate
Finally, we predict the story ending by combining the above
three sources of information. We utilize the feature vectors
hkM in the narrative sequence, Ee in the sentiment evolution,
and D in the commonsense knowledge and calculate their
cosine similarities. Then we concatenate them into a vector
g. We use a linear layer to model the combination gate and
use that gate to combine three conditional probabilities.

G = softmax(Wgg + bg) (12)

P̃ (y|s1, ..., s4, ei) = softmax(sum(G� [PN ;PS ;PC ]))
(13)

where Wg and bg are parameters in the linear layer,
(PN , PS , PC) are the three probabilities modeled in (5), (10)
and (11),G is the hidden variable that weighs three different
conditional probabilities and � is element-wise multiplica-
tion.

Finally, since each of the three components (PN , PS and
PC) are either pre-trained on a separate corpus or individu-
ally tuned on the task, we fine-tune the entire model in an
end-to-end manner by minimizing the following cost:

L̃ = Lcm(S)− λ ∗ Llm(C) (14)

where Lcm(s) =
∑
−ylog(P̃ ) is the cross-entropy between

the final predicted probability and the true label, Llm is a
regularization term of language model cost, and λ is the reg-
ularization parameter.
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Sentence Number of words Number of keywords
s1 8.9 6.2
s2 9.9 6.5
s3 10.2 6.7
s4 10.0 6.5
e1 10.5 5.7
e2 10.3 5.8

Table 1: The average number of words and key-words exist
in ConceptNet in each sentence of the story

Dataset
We evaluated our model on ROCStories (Mostafazadeh et
al. 2017), a publicly available collection of commonsense
short stories. This corpus consists of 100,000 five-sentence
stories. Each story logically follows everyday topics created
by Amazon Mechanical Turk (MTurk) workers. These sto-
ries contain a variety of commonsense causal and temporal
relations between everyday events. Writers also develop an
additional 3,742 stories which contain a four-sentence-long
body and two candidate endings. The endings were collected
by asking MTurk workers to write both a right ending and
a wrong ending after eliminating original endings of given
short stories. Both endings were required to include at least
one character from the main story line and to make logical
sense. and were tested on AMT to ensure the quality. The
published ROCStories dataset 2 is constructed with ROC-
Stories as a training set that includes 98,162 stories that ex-
clude candidate wrong endings, an evaluation set, and a test
set, which have the same structure (1 body + 2 candidate
endings) and a size of 1,871.

We find that the dataset contains 43,095 unique words,
and 28,012 key-words in ConceptNet. The average number
of words and key-words in ConceptNet for each sentence
are shown in Table 1. s1, s2, s3 and s4 are four sentences
in the body of stories. e1 and e2 are the two candidate end-
ings. A large portion (65%) of words mentioned in stories
are key-words in ConceptNet. Thus we believe ConceptNet
can provide additional information to the model.

In our experiments, we use a training set which does not
have candidate endings to pre-train the sentiment prediction
model. For learning to select the right ending, we randomly
split 80% of stories with two candidates endings in ROC-
Stories evaluation set as our training set (1,479 cases), 20%
of stories in ROCStories evaluation set as our validation set
(374 cases). And we utilize the ROCStories test set as our
testing set (1,871 cases).

Experiments
Baselines
We use the following models as our baselines:

Msap(Schwartz et al. 2017): Msap uses a linear classi-
fier based on language modeling probabilities of the entire
story, and utilizes linguistic features of the ending sentences.
These ending “style” features include sentence length, word

2http://cs.rochester.edu/nlp/rocstories

Model Accuracy(%)
Msap(Schwartz et al. 2017) 75.2

HCM (Chaturvedi et al. 2017) 77.6
DSSM (Huang et al. 2013) 58.5

Cai (Cai, Tu, and Gimpel 2017) 74.7
SeqMANN (Li et al. 2018) 84.7

FTLM (Radford et al. 2018) 86.5
Our Model(Plot&End) 78.4
Our Model(Full Story) 87.6*

Table 2: Performance comparison with baselines, *indicates
that the model is significantly better than best baseline model

and character n-gram in each candidate ending (independent
of story).

HCM(Chaturvedi et al. 2017): HCM uses FC-SemLM
(Peng and Roth 2016) in order to represent events in the
story, learns sentiment trajectories in a form of N-gram lan-
guage model, and uses topic-words’ GloVe to extract top-
ical consistency feature. It uses Expectation-Maximization
for training.

DSSM(Huang et al. 2013): DSSM first uses two deep
neural networks to project the context and the candidate end-
ings into the same vector space, and ending choices based on
the cosine similarity of the context.

Cai(Cai, Tu, and Gimpel 2017): Cai uses BiLSTM RNN
with attention mechanisms to encode the body and ending
of the story separately and uses a cosine similarity between
their representations to calculate the score for each ending
during selection process.

SeqMANN(Li et al. 2018): SeqMANN uses a multi-
attention neural network and introduces semantic sequence
information extracted from FC-SemLM as external knowl-
edge. The embedding layer concatenates five representations
including word embedding, character feature, part-of-speech
(POS) tagging, sentiment polarity and negation. The model
uses DenseNet to match body with an ending.

FTLM(Radford et al. 2018): FTLM solves the stories
cloze test by pre-training a language model using a multi-
layer transformer on a diverse corpus of unlabeled text, fol-
lowed by discriminative fine-tuning.

Experimental Settings
We tune the hyper parameters of models on the validation
set. Specifically, we set the dimension of LSTM for senti-
ment prediction to 64. We use a mini-batch size of 8, and
Adam to train all parameters. The learning rate is set to 0.001
initially with a decay rate of 0.5 per epoch.

Results
We evaluated baselines and our model using accuracy as
the metric on the ROCStories dataset, and summarized
these results in Table 2. The linear classifier with lan-
guage model, Msap, achieved an accuracy of 75.2%. When
adding additional features, such as sentiment trajectories
and topic words to traditional machine learning methods,
HCM achieved an accuracy of 77.6%. Recently, more neural

6248



Types of information Accuracy(%)
Narrative 85.3
Sentiment 58.7

Knowledge 63.8
Our Model(All Types) 87.6

Table 3: Performance on only using one type of information

Types of information Accuracy(%)
Our Model(All Types) 87.6

- Narrative 65.9
- Sentiment 87.2

- Knowledge 85.6

Table 4: Performance on stripping one type of information,
e.g. “- Sentiment” means removing sentiment information.

network-based models are used. DSSM simply used a deep
structured semantic model to learn representations for both
bodies and endings only achieved an accuracy of 58.5%. Uti-
lizing Cai improved neural model performance to 74.7%
by applying attention mechanisms on a BiLSTM RNN
structure. SeqMANN further improved the performance to
84.7%, when combining more information from embedding
layers, like character features, part-of-speech (POS) tagging
features, sentiment polarity, negation information and some
external knowledge of semantic sequence. Researchers also
improved model performance by pre-training word embed-
dings on external large corpus. FTLM pre-trained a lan-
guage model on a large unlabeled corpus and fine-tuned on
the ROCStories dataset, and achieved an accuracy of 86.5%.

We tried two different ways to construct narrative se-
quence features: Plot&End and FullStory. Plot&End en-
codes the body and ending of a story separately and then
computes their cosine similarity. We use a hierarchy struc-
ture to encode the four body sentences. However using such
encoding method, our model only achieved an accuracy of
78.4%. One possible reason is that the relation between
sentences learned through pre-trained language models are
not fully explored if we encode each sentence separately.
FullStory encodes all five sentences together. Our model
achieved the best performance when using FullStory mode
to encode narrative sequence information. We achieved an
accuracy of 87.6%, outperforming all baseline models. Such
improvement may come from the full use of the pre-trained
transformer block, as well as the incorporation of the struc-
tured commonsense knowledge and sentiment information
in the model.

Ablation Study
We conducted another two groups of experiments to investi-
gate the contribution of the three different types of informa-
tion: narrative sequence, sentiment evolution and common-
sense knowledge. First, we measure the accuracy of only us-
ing one type of information at a time and describe the re-
sult in Table 3. When we use just one type of information,
the performances are worse than when using all of the in-
formation, suggesting a single type of information is insuf-

ficient for story ending selection. We also measure the per-
formance of our model by stripping one type of information
at a time and display the results in Table 4. We observe that
by removing the narrative sequence information, the model
performance decreases most significantly. We suspect this is
because the narrative chain is the key element that differenti-
ates a story from other types of writing. Therefore, removing
narrative sequence information makes it difficult to predict
the story ending. If we only use the narrative sequence in-
formation, the performance is 85.3%. When commonsense
knowledge is added to the model on top of the narrative
sequence information, the performance improves to 87.2%
which is statistically significant. When sentiment evolution
information is added, the model only improves to 87.6%.
We speculate this is because the pre-trained language model
from narrative sequence information may already capture
some sentiment information, as it is trained on an ensem-
ble of several large corpus. This suggests that commonsense
knowledge has a large impact on narrative prediction task.

Case Study
We present several examples to describe the decision made
at the combination gate. All the examples are shown in Ta-
ble 5.

The first story shows how narrative sequence can be the
key in detecting the coherent story ending. This one tells a
story of Agatha and birds. As we have analyzed in the narra-
tive sequence, the narrative chain is apparently the most ef-
fective clue in deciding the right ending. In the combination
gate, the narrative part’s weight is 0.5135, which is larger
than the sentiment component’s weight, 0.2214 as well as
the commonsense component’s weight of 0.2633. The con-
ditional probability of the correct ending given the narrative
information is 0.8634, which is much larger than the wrong
ending. As both sentences’ sentiments are neutral, the sen-
timent information is not useful . And as the word “buy”
has closer relation to “want” and “purchase” mentioned in
the sentence body than the word,“return”, the commonsense
knowledge actually makes the wrong decision which gives
slightly higher probabilities to the wrong ending(0.5642).

The second story shows why and how sentiment evolu-
tion is influencing the final performance. It is a story about
Jackson’s beard: Jackson wanted to grow a beard regardless
of what his friends said, and he was satisfied with his bushy,
thick beard. Clearly the emotions between the two candidate
endings are different. Based on the rule of consistent senti-
ment evolution, an appropriate ending should have a positive
emotion rather than a negative emotion. The output of our
model shows that in the combination gate, the sentiment evo-
lution component received the largest weight, 0.4880, while
the narrative sequence and the commonsense knowledge
component have a weight of 0.2287 and 0.2833. Finally,
the probability of the correct ending is 0.5360, larger than
that of the wrong ending which is 0.4640 in sentiment part.
Whereas in the narrative sequence component, the probabil-
ity of the correct option is 0.4640, smaller than the wrong
ending which is 0.5360. Other models like FTLM that only
rely on narrative sequence will make the wrong decision in
this case. The probabilities of the commonsense knowledge
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Body Correct ending Wrong ending
Agatha had always wanted pet birds.

So one day she purchased two pet finches.
Soon she couldn’t stand their constant noise.

And even worse was their constant mess.

Agatha decided to
return them.

Agatha decided to
buy two more.

Jackson had always wanted to grow a beard.
His friends told him that a beard would look bad, but he ignored them.

Jackson didn’t shave for a month and he grew a bushy, thick beard.
Admiring himself in the mirror, Jackson felt satisfied.

He was glad that he
hadn’t listened
to his friends.

He was ashamed
of himself.

I was walking through Central Park on a fall day.
I found a stray dog with a collar.

I called the number on the collar and talked to the owners.
The owners came to the park to pick up their dog.

They thanked me
very much

for finding their dog.
They let me keep it.

Table 5: Three examples from ROCStories. The first column is the body of the story, the second column is the correct ending,
and the third column is the wrong ending.

component is 0.5257 versus 0.4725. Through combination
gate, our model mainly relies on the sentiment to make a se-
lection. As a result, it will identify the right ending despite
other components influence toward a wrong decision.

Figure 4: Sub-graph in ConceptNet

The third example presents the roles commonsense
knowledge plays in our model. It tells a story about a person
finding a dog. The sentiments of the two candidates are both
neutral again. But based on the knowledge graph in Concept-
Net, shown in Figure 4, there exists many relations between
the correct ending and the story body. The key-words in the
ending are in red, and the key-words in the story body are in
blue. The key-words such as “stray” and “collar” are highly
associated with “dog” and “find” in the correct ending. The
result shows that the gate gives the commonsense knowledge
component a weight of 0.5156, which is the largest among
the three components. The conditional probability of the cor-
rect ending considering commonsense information (0.5540)
is larger than the wrong ending as we expected. In this case,
the narrative sequence component makes the wrong deci-
sion, which gives higher probabilities to the wrong ending
(0.5283). Thus models like FTLM which only consider nar-
rative chain will identify the wrong ending. However, as the
combination gate learns to trust the commonsense knowl-
edge component in this example more, our model still pre-
dicts the correct ending.

We can see that our model is able to learn to rely on dif-
ferent information types based on the content of different
stories. We obtain such model effectiveness by using a com-

Figure 5: An example involves negation in ROCStories

bination gate to fuse all three types of information, and in
doing so, understand how all three are imperative in cover-
ing all possible variations in the dataset.

However, it is still challenging for our model to handle
the stories that have negations. Figure 5 shows an example.
It tells a story between Johnny and Anita. But the only dif-
ference between two candidate endings is the negation word.
Even when fusing three types of information, our model still
cannot get the answer right. Because both event chains are
about “asking Anita out”, they are both neutral in sentiment,
and the key-words in these two endings are the same as well.
In the future, we plan to incorporate natural language infer-
ence information to the model to handle such cases.

Conclusion
Narrative completion is a complex task that requires both ex-
plicit and implicit knowledge. We proposed a neural network
model that utilized a combination gate to fuse three types of
information including: narrative sequence, sentiment evolu-
tion and structured commonsense knowledge to predict story
endings. The model outperformed state-of-the-art methods.
We found that introducing external knowledge such as struc-
tured commonsense knowledge helps narrative completion.
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