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Abstract

Learning probability distributions on the weights of neural
networks has recently proven beneficial in many applications.
Bayesian methods such as Stochastic Gradient Markov Chain
Monte Carlo (SG-MCMC) offer an elegant framework to rea-
son about model uncertainty in neural networks. However,
these advantages usually come with a high computational
cost. We propose accelerating SG-MCMC under the master-
worker framework: workers asynchronously and in parallel
share responsibility for gradient computations, while the mas-
ter collects the final samples. To reduce communication over-
head, two protocols (downpour and elastic) are developed to
allow periodic interaction between the master and workers.
We provide a theoretical analysis on the finite-time estima-
tion consistency of posterior expectations, and establish con-
nections to sample thinning. Our experiments on various neu-
ral networks demonstrate that the proposed algorithms can
greatly reduce training time while achieving comparable (or
better) test accuracy/log-likelihood levels, relative to tradi-
tional SG-MCMC. When applied to reinforcement learning,
it naturally provides exploration for asynchronous policy op-
timization, with encouraging performance improvement.

Introduction
Deep neural networks (DNNs) have become widely used
in machine learning, often achieving state-of-the-art per-
formance across a variety of applications. Recently, there
has been considerable interest in developing principled yet
scalable Bayesian learning methods (Blundell et al. 2015;
Hernández-Lobato and Adams 2015; Korattikara et al. 2015;
Kingma, Salimans, and Welling 2015; Gal and Ghahra-
mani 2016; Bui et al. 2016; Liu and Wang 2016), to ob-
tain good estimates of uncertainty for the DNN weights.
The learned uncertainty is then transferred to predictions
during testing, to help alleviate overfitting, and/or to quan-
tify confidence about predictive estimates. Markov chain
Monte Carlo (MCMC) is perhaps the most well-known fam-
ily of (sample-based) uncertainty-estimation methods for
DNNs. Hamiltonian Monte Carlo (HMC) (Neal 1995) is a
popular member of this family. More recently, mini-batch-
based methods, such as stochastic gradient MCMC (SG-
MCMC) (Welling and Teh 2011; Chen, Fox, and Guestrin
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2014; Ding et al. 2014; Li et al. 2016a; Liu, Zhu, and Song
2016; Durmus et al. 2016; Fu and Zhang 2017; Cong et al.
2017; Li et al. 2016b; Gan et al. 2017) have been developed
to deal with the inherent scalability problems of MCMC
methods when applied to large data sets.

The standard formulation of SG-MCMC is sequential,
i.e., it alternates between two operations: gradient evalua-
tion and parameter updates. To improve the speed of SG-
MCMC algorithms, we consider estimating weight uncer-
tainty through parallelizing across multiple compute cores
(processing nodes or processors). A natural approach to par-
allel SG-MCMC consists of allowing each compute core
to access the full data set, run separate SG-MCMC chains
(without communication), and then combine their results
as independent samples. Though a larger number of sam-
ples can be obtained, each chain has in principle roughly
the same mixing speed w.r.t. serial SG-MCMC. However, it
is likely to be better at exploring parameter space, because
each chain can be initialized to a different starting point in
such a space.

An alternative approach to implementing parallel SG-
MCMC allows communication between compute cores:
some cores (workers) are tasked with improving the mixing
(via stochastic gradients) of sample paths (Markov chains)
maintained by a different core (master), which regularly
sends globally aggregated parameter summaries back to the
workers. The cross-talk between workers through the mas-
ter allows the parameter space to be efficiently represented
with a smaller number of samples, collected by the master
core. Unfortunately, communication overhead prevents in-
stantaneous communication between master and workers at
every step of the learning procedure. One compromise strat-
egy consists of allowing the master to interact with work-
ers periodically. This raises a different concern: to the best
of our knowledge, there are no effective protocols for SG-
MCMC to coordinate the exchange of information between
cores, under communication constraints.

In this paper, we propose leveraging parallelization to
accelerate SG-MCMC under a master-worker framework.
Multiple workers run individual SG-MCMC chains to ex-
plore the parameter space at the same time; they periodically
communicate with the master to share information about
model parameters. In the distributed optimization literature,
numerous approaches have been proposed for coordination
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of work among concurrent processes, including downpour
stochastic gradient descent (SGD) (Dean and others 2012)
and elastic SGD (Zhang, Choromanska, and LeCun 2015).
We argue that these ideas can be properly adjusted to im-
prove SG-MCMC on two fronts: (i) For training, the mixing
speed of samples kept on the master is improved, as more
gradient evaluations per time interval can be performed. (ii)
The periodic communication protocols help reduce commu-
nication overhead, while maintaining high-quality testing
performance, using a small number of effective samples.

Our contributions are summarized as follows. First, we
develop two periodic communication protocols to acceler-
ate SG-MCMC. In support of these ideas, we provide finite-
time estimation error bounds, and show their connection to
sample thinning, to illustrate its role in aggregating knowl-
edge from multiple chains into a more compact sample “en-
semble”. Second, we apply the new algorithms to paral-
lelized estimation of uncertainty for DNN weights. Exper-
imental results demonstrate that it provides significant ac-
celeration without performance penalties, including test ac-
curacy and prediction uncertainty, compared to traditional
SG-MCMC. Third, we develop the first asynchronous SG-
MCMC to learn the policy weight uncertainty in reinforce-
ment learning. It naturally favours exploration and stabilize
training, with improved performance.

Weight Uncertainty with SG-MCMC
Bayesian View of Neural Networks
Consider i.i.d. data D = {D1, · · · ,DN}, where Dn ,
(Xn,Yn) with input Xn and output Yn. The explicit forms
of Xn and Yn can be specified for different models and ap-
plications. Our goal is to learn model parameters θ to best
characterize the relationship from Xn to Yn, via the data
likelihood p(D|θ) =

∏N
n=1 p(Dn|θ). In Bayesian statis-

tics, one sets a prior on θ via distribution p(θ). The poste-
rior p(θ|D) ∝ p(θ)p(D|θ) reflects the belief concerning the
model parameter distribution after observing data D. Differ-
ent DNNs imply different parametric forms of the likelihood
p(D|θ), thus providing a Bayesian treatment for the feedfor-
ward, convolutional and recurrent neural networks.

During testing, given an input X̃ (with missing out-
put Ỹ), the uncertainty learned in training is transferred
to prediction, yielding the posterior predictive distribution:
φ̄ , p(Ỹ|X̃,D) =

∫
θ
p(Ỹ|X̃,θ)p(θ|D)dθ. Typically φ̄

is not available in closed form. Online versions of varia-
tional Bayes (Blundell et al. 2015) and expectation propa-
gation (Hernández-Lobato and Adams 2015) have been de-
veloped to approximate φ̄. Alternatively, we employ SG-
MCMC to provide sample-based approximations to the pos-
terior expectation.

Single-Worker SG-MCMC
The negative log-posterior is

U(θ) , − log p(θ)−
N∑
n=1

log p(Dn|θ) , (1)

In (Ma, Chen, and Fox 2015) a framework is proposed to
generate approximate samples from a family of continuous-
time diffusions, whose stationary distribution coincides with
the posterior distribution of interest. To generate samples
from these diffusions, numerical methods are adopted to dis-
cretize the continuous-time system with step-size εt for step
t. As a result, the t-th sample is typically generated using the
update rule (Ma, Chen, and Fox 2015):

zt+1 =zt − εt [(W (zt) +Q(zt))∇θH(zt) + Γ(zt)]+ξt,

ξt ∼ N (0, 2εtW (zt)) , (2)

where z is the system state containing the model parame-
ters θ, ∇θH is often related to the gradient f = ∇θU(θ)
and {W (zt), Q(zt),Γ(zt)} are functions of zt to be spec-
ified for different algorithms (defined below). The compu-
tational efficiency of these sampling methods largely relies
on the cost of computing f . When N is large, SG-MCMC
methods (Welling and Teh 2011; Chen, Fox, and Guestrin
2014; Ding et al. 2014; Li et al. 2016a) extend the sam-
pling method in (2), by proposing to evaluate the gradient
on a mini-batch of data DM = {Di1 , · · · ,DiM }, where
{i1, · · · , iM} are random subsets of the set {1, 2, · · · , N},
such that M � N . Therefore, f t is approximated with
stochastic gradient:

f̃ t = ∇Ũ(θt), where

Ũ(θt),− log p(θt)− N
M

∑M
m=1 log p(Dim |θt) . (3)

In (2), the choice of W (·), Q(·) and Γ(·) defines various
SG-MCMC algorithms; see (Ma, Chen, and Fox 2015) for
details, and below we describe two algorithms considered in
this paper.

Stochastic Gradient Langevin Dynamics (SGLD) cor-
responds to z=θ, H(θ) =U(θ), W (θ) = I, Q(θ) =0, and
Γ(θ)=0 (Welling and Teh 2011).

Stochastic Gradient Hamiltonian Monte Carlo
(SGHMC) extends HMC to use mini-batches for updates;
z = (θ, q), H(θ, q) = U(θ) + 1

2q
Tq, W (θ, q) =

[
0 0
0 BI

]
,

Q(θ, q) =
[
0 −I
I 0

]
, and Γ(θ, q) =

[
0 0
0 0

]
, where q is the

momentum variable, and B is a constant (Chen, Fox, and
Guestrin 2014).

After obtaining L parameter samples {θl}Ll=1 , a Monte
Carlo (MC) approximation is assembled to estimate the ex-
pectation: φ̄≈ φ̂ , 1

L

∑L
l=1 p(Ỹ|X̃,θl). The key characteristic

of SG-MCMC is that the cost of gradient evaluation is re-
duced from O(N) to O(M), thus allowing for many more
parameter updates per unit time. In practice, this leads to
much shorter burn-in times and faster mixing speeds (Ahn,
Shahbaba, and Welling 2014). In the same spirit, SG-MCMC
can be further accelerated if, via parallelization, more gradi-
ent evaluations per unit time can be completed.

Speed up with Communication Constraints
From Single Worker to Multiple Workers
We separate the two operations in SG-MCMC into two
workflows: (i) parallel gradient evaluation on multiple work-
ers, and (ii) parameter updates on the master. From this per-
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spective, traditional SG-MCMC (serial) can be seen as eval-
uating gradients on a single worker, while the master waits
until the worker has completed its task, as shown in Fig. 1(a).

We first introduce the intuition for accelerating SG-
MCMC in the synchronous setting, shown in Fig. 1(b). In
a star-shaped compute architecture, the master maintains
the summary model parameters θ (center parameters),
P workers keep their own copy of parameters, θ(p) (in-
termediate parameters), which are updated by running
SG-MCMC with their own gradients f̃ (p). All computing
cores share the same global clock, and the center param-
eters θt at the t-th step are updated by aggregating over
{θ(p)t }Pp=1. Ideally (with no communication overhead and
identical worker capacity), the mini-batch is split on the
P workers, reducing computation of gradient evaluation to
O(M/P ). To make the center parameters a proper sample
from the posterior, higher noise is injected to each sam-
ple on each worker, i.e., ξt in (2) is drawn instead from
N (0, 2εtPW (zt)). We consider two aggregation schemes,
summarized in Table 1:
• In Scheme A, the master averages the intermediate pa-

rameters from all the workers at the current step, t, then
updated center parameters are sent back to each worker.
• In Scheme B, the master averages the parameters ob-

tained from the workers and smoothes over time. This is
inspired by the Adam algorithm (Kingma and Ba 2015),
where a weighted average of historical gradients reduces
the variance in gradient estimation. The center parame-
ters are smoothed with parameter α (see Table 1), us-
ing historical parameters stored in the master, where
α ∈ (0, 1] is the decay weight controlling the amount
of smoothing (we use 0.9 as default value).

There are two practical issues with the synchronous set-
ting: (i) instantaneous communication after every gradient
evaluation results in prohibitive communication overhead,
and (ii) synchronous updates can be inefficient, when work-
ers have different processing capabilities or when certain
workers are offline. We extend the two schemes in Table 1
to the asynchronous setting via periodic communication.

Periodic Communication Protocols
In the asynchronous setting, each worker maintains its own
clock t(p), which starts from 0 and is incremented by 1 after
each evaluation of f̃ (p). Multiple workers asynchronously
update center parameters, leading to potentially higher mix-
ing speeds compared to traditional SG-MCMC. For illustra-
tion, Fig. 1(c) shows two workers with different processing
abilities. The gradient on worker p1 is evaluated on the more
recent θ2 instead of θ0, while the gradient on worker p2 is
evaluated on θ3 instead of θ2. To reduce the communication
overhead, the master performs an update only when the local
worker has finished π steps of its gradient evaluations, where
π denotes the communication period. Figure 1(d) shows
an example with π = 2. Below we develop two periodic
communication protocols, based on (Dean and others 2012;
Zhang, Choromanska, and LeCun 2015).
π-downpour protocol Scheme A in Table 1 is extended

to accumulate the update during the π steps in ν (Dean and

others 2012), which denotes the space that the worker has
explored since its last communication. Besides θ(p), the p-th
worker also maintains ν(p). When the next communication
happens, the master absorbs ν(p) and sends new center pa-
rameters back to the p-th worker to replace (update) θ(p).

(π, α)-elastic protocol The weighted average in Scheme
B results in a difference between historical center parame-
ter and current parameters sent from a worker, as the former
are smoothed over previous steps. The master waits until the
p-th worker has sent the requested θ(p), then computes the
elastic difference α(θ(p)−θ) (Zhang, Choromanska, and Le-
Cun 2015). Next, this difference is sent back to the worker
who then updates θ(p).

Any SG-MCMC method can in principle incorporate the
above protocols for speed up. Within this framework, we
have implemented two novel algorithms as examples, to il-
lustrate these procedures.

Downpour SGLD Algorithm 1 employs an asyn-
chronous parallel procedure to combine SGLD (lines 5-9),
with the downpour protocol (lines 12-17), termed down-
pour SGLD. Recent preconditioning techniques (Li et al.
2016a; Simsekli et al. 2016) leverage the local geometry
of the parameter space to approximate the Fisher informa-
tion matrix, and have equipped SGLD with adaptive step-
sizes for DNNs. Similarly, we parallelize the preconditioned
SGLD (Li et al. 2016a) to develop downpour pSGLD, shown
in the Section A of Supplementary Material (SM).

Elastic SGHMC Momentum has been shown capable of
accelerating the learning trajectory along directions of low-
curvature in the parameter space of DNNs, leading to faster
convergence speeds (Sutskever et al. 2013). In Algorithm 2,
we incorporate SGHMC (lines 5-10) into the elastic protocol
(lines 12-17), termed elastic SGHMC.

Analysis and Practice

Finite-Time Estimation Errors

Samples obtained from MCMC methods are often used to
estimate the posterior expectation φ̄ =

∫
φ(θ)p(θ|D)dθ

of a test function φ(θ). In the context of DNNs, φ(θ) =

p(Ỹ|X̃,θ), and φ̄ is the predictive distribution. For SG-
MCMC, the model averaging approximation is implemented
as φ̂ = 1

SL

∑L
l=1 εlφ(θl) , where SL =

∑
l,p ε

(p)
l and ε

(p)
l =∑t(p)

t=t(p)−π εt is the accumulated step-size obtained from the
p-th worker for l-th sample. For each worker, S(p)

L =
∑
l ε

(p)
l .

The quality of the MCMC approximation to the true poste-
rior expectation can be characterized by the bias and mean
squared error (MSE), defined as: |Eφ̂L − φ̄| and E(φ̂L − φ̄)2,
respectively. Furthermore, following (Chen et al. 2016), we
also study the estimation variance defined as: E(φ̂L−Eφ̂L)2.
We extend the work of (Chen, Ding, and Carin 2015;
Teh, Thiéry, and Vollmer 2016; Vollmer, Zygalakis, and Teh
2015) to derive the bounds to account for the proposed com-
munication protocols; See Section B of SM for all proofs.

The bias, variance and MSE of standard SG-MCMC (P =
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(a) One worker (b) Synchronous
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Figure 1: Illustration of different SG-MCMC implementations. Each row represents a master, m, or a worker, p. An in-
termediate sample is collected at each arrow point, whose length represents the time required to evaluate the gradient. (a)
Standard SG-MCMC corresponds to one worker. (b) Multiple workers accelerate gradient evaluation and update parameter
synchronously. (c) Multiple workers update parameter asynchronously. (d) Asynchronous communication with period π = 2.

Table 1: Two synchronous communication schemes.

Master The p-th Worker
A θt = 1

P

∑P
p=1 θ

(p)
t θ

(p)
t = θt

B θt=θt−1 + α
P

∑P
p=1(θ

(p)
t − θt−1) θ

(p)
t = θ

(p)
t + α(θt−1 − θ(p)t )

Algorithm 1 Downpour SGLD.
1: Input: ✏t, ⇡ 2 N
2: Output: {✓l}L

l=1

3: Initialize: t(p) = 0, l = 0, ⌫(p) = 0
✓̃ ⇠ N (0, I), ✓(p) = ✓̃

4: while maximum time not reached do
5: % Estimate gradient from DM

6: f̃
(p)

t = rŨ(✓
(p)
t )

7: % Parameter update with SGLD

8: ⇠
(p)
t ⇠ N (0, I)

9: ✓
(p)
t+1 ✓

(p)
t � ✏tf̃

(p)

t +
p

2✏t⇠
(p)
t

10: ⌫
(p)
t+1 ⌫

(p)
t � ✏tf̃

(p)

t +
p

2✏t⇠
(p)
t

11: t(p)  t(p) + 1
12: % ⇡�Downpour Communication
13: if t(p) divide ⇡ then
14: ✓l+1  ✓l + ⌫

(p)
t+1

15: ✓
(p)
t+1  ✓l+1 ⌫

(p)
t+1  0

16: l = l + 1
17: end if
18: end while

Algorithm 2 Elastic SGHMC.
1: Input: ✏t, ↵, B, ⇡ 2 N
2: Output: {✓l}L

l=1

3: Initialize: t(p) = 0, l = 0, q(p) = 0
✓̃ ⇠ N (0, I), ✓(p) = ✓̃

4: while maximum time not reached do
5: % Estimate gradient from DM

6: f̃
(p)

t = rŨ(✓
(p)
t )

7: % Parameter update with SGHMC

8: ⇠
(p)
t ⇠ N (0, I)

9: q
(p)
t+1 q

(p)
t �Bq

(p)
t �✏tf̃

(p)

t +
p

2B✏t⇠
(p)
t

10: ✓
(p)
t+1 ✓

(p)
t + q

(p)
t+1

11: t(p)  t(p) + 1
12: % (⇡,↵)�Elastic Communication

13: if t(p) divide ⇡ then
14: ✓l+1  ✓l + ↵

�
✓

(p)
t+1 � ✓l

�

15: ✓
(p)
t+1  ✓

(p)
t+1 + ↵

�
✓l � ✓

(p)
t+1

�
16: l = l + 1
17: end if
18: end while

1 and π = 1) is bounded by (Chen, Ding, and Carin 2015):

Bias: |Eφ̂L − φ̄| ≤B0 =B0E0, (4)

Variance: E(φ̂L − Eφ̂L)2 ≤ V0 = V0E2 . (5)

MSE: E(φ̂L − φ̄)2≤M0 = M0(E1 + E2),with (6)

E0 =
1

SL
+
∑

l

ε2l
SL
, E1=

∑

l

ε2l
S2
L

E ‖∆Vl‖2, E2= 1

SL
+

(
∑
l ε

2
l )

2

S2
L

,

where ∆Vl = f̃ l − f l, and B0, V0 and M0 are constant val-
ues independent of {εl} and L. The MSE bound includes
two independent terms: E1 is the approximate error using
stochastic gradients, and E2 is discretization error from the
numerical integrator. When SL → ∞ and

∑
l ε

2
l

SL
→ 0 with

decreasing step-sizes, both terms diminish, leading the bias
and MSE to asymptotically converging to zero.

Algorithm 1 Downpour SGLD.
1: Input: ✏t, ⇡ 2 N
2: Output: {✓l}L

l=1

3: Initialize: t(p) = 0, l = 0, ⌫(p) = 0
✓̃ ⇠ N (0, I), ✓(p) = ✓̃

4: while maximum time not reached do
5: % Estimate gradient from DM

6: f̃
(p)

t = rŨ(✓
(p)
t )

7: % Parameter update with SGLD

8: ⇠
(p)
t ⇠ N (0, I)

9: ✓
(p)
t+1 ✓

(p)
t � ✏tf̃

(p)

t +
p

2✏t⇠
(p)
t

10: ⌫
(p)
t+1 ⌫

(p)
t � ✏tf̃

(p)

t +
p

2✏t⇠
(p)
t

11: t(p)  t(p) + 1
12: % ⇡�Downpour Communication
13: if t(p) divide ⇡ then
14: ✓l+1  ✓l + ⌫

(p)
t+1

15: ✓
(p)
t+1  ✓l+1 ⌫

(p)
t+1  0

16: l = l + 1
17: end if
18: end while

Algorithm 2 Elastic SGHMC.
1: Input: ✏t, ↵, B, ⇡ 2 N
2: Output: {✓l}L

l=1

3: Initialize: t(p) = 0, l = 0, q(p) = 0
✓̃ ⇠ N (0, I), ✓(p) = ✓̃

4: while maximum time not reached do
5: % Estimate gradient from DM

6: f̃
(p)

t = rŨ(✓
(p)
t )

7: % Parameter update with SGHMC

8: ⇠
(p)
t ⇠ N (0, I)

9: q
(p)
t+1 q

(p)
t �Bq

(p)
t �✏tf̃

(p)

t +
p

2B✏t⇠
(p)
t

10: ✓
(p)
t+1 ✓

(p)
t + q

(p)
t+1

11: t(p)  t(p) + 1
12: % (⇡,↵)�Elastic Communication

13: if t(p) divide ⇡ then
14: ✓l+1  ✓l + ↵

�
✓

(p)
t+1 � ✓l

�

15: ✓
(p)
t+1  ✓

(p)
t+1 + ↵

�
✓l � ✓

(p)
t+1

�
16: l = l + 1
17: end if
18: end while

Analysis of Downpour Protocal To obtain the bias
bound for the downpour protocol, note that in the origi-
nal proof (Chen, Ding, and Carin 2015) for standard SG-
MCMC, there are extra terms ‖E∆Vl‖ = 0, which are
dropped in the bias bound. When considering the down-
pour protocol, however, these terms do not equal to zero,
and thus cannot be dropped. Similarly, for the MSE bound,
note that compared with standard SG-MCMC, there is ad-
ditional error associated with the gradient approximation,
i.e., θl+1 is obtained with a stochastic gradient f̃ l−πl

eval-
uated on “old” parameters θl−πl

for some integer πl ≤
π(P − 1), instead of θl. As a result, the term ∆Vl in (6)
is replaced with ∆Ṽl , f̃ l−πl

− f l = (f̃ l−πl
− f̃ l) + (f̃ l −

f l) = (f̃ l−πl
− f̃ l) + ∆Vl. Note that E‖f̃ l−πl

− f̃ l‖ can be
bounded under the Lipchitz assumption (Lian et al. 2015;
Abdulle, Vilmart, and Zygalakis 2015). We summarize the
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bias, variance and MSE bounds for the downpour protocol,
based on single-worker SG-MCMC:

Bias: B1 = B1(E0 +
√
E3) (7)

Variance: V1 = V1E2 (8)
MSE: M1 = M1(E1 + E2 + E3), with (9)

E3 = π2(P − 1)2
(
∑
l ε

2
l )

2

S2
L

,

where B1, V1 and M1 are constant values. The extra error
term E3 is due to the approximation error introduced by us-
ing multiple workers and communication delays. Larger π
and P lead to larger errors in E3. However, when P workers
are employed, we can also get a P -times smaller 1

SL
in E0

for the bias and E2 for the MSE per wallclock time interval,
possibly leading to lower bias and MSE bounds. If the same
step-size conditions hold in this case, the bias and MSE will
still asymptotically approach zero. Furthermore, we notice
that the estimation variance is independent of P and π, lead-
ing to a linear speedup with respect to P .

Analysis of Elastic Protocal Concerning the MSE bound
for the elastic protocol, we note that α = 1 corresponds
to the case for which the master essentially plays the role
of only exchanging intermediate parameters among work-
ers every π steps, an algorithm proposed in (Ahn, Shahbaba,
and Welling 2014) when data are shared across workers. It is
equal to running P independent chains, and collecting sam-
ples every π steps instead of all samples, bounded as:

Bias: B2 = B2E0 (10)

Variance: V2 = V2E ′2 (11)

MSE: M2 = M2(E ′1 + E ′2), with (12)

E ′1 =

∑
p(S

(p)
L )2

S2
L

E(p)1 , E ′2 =
1

SL
+

∑
i,j(

∑
l((ε

(i)
l )2+(ε

(j)
l )2))2

S2
L

,

where B2, V2 and M2 are constant values., and E(p)1 is E1 for
a single worker.

Role of the Communication Period
We show that periodic protocols relate to thinning samples
on each worker; the thinned samples are then maintained
on the master. We have the following observations for one
worker case (P = 1).
• The samples obtained from a π-downpour SG-MCMC

algorithm are equivalent to the samples obtained from a
standard SG-MCMC algorithm with thinning interval π.
• When α = 1, the samples obtained from a (π, α)-elastic

SG-MCMC algorithm are equivalent to the samples ob-
tained from a standard SG-MCMC algorithm with thin-
ning interval π.

This can be shown by plugging in the special cases into the
procedures in Algorithm 1 and 2, as the samples within the

period π are not sent to the master. By “thinning”, the to-
tal number of samples on the master are reduced, while re-
ducing the communication overhead between the master and
workers. Moreover, these thinned samples have a lower au-
tocorrelation time and maintain a similar effective sample
size (Li et al. 2016a). When P > 1, more samples are ob-
tained per unit time, while containing information about the
parameter space explored by multiple workers.

Related Work
Note that one can parallelize any of the three components
of SG-MCMC to accelerate learning: data, model param-
eters and gradients. Data parallelism of SG-MCMC was
first implemented in (Ahn, Shahbaba, and Welling 2014),
where each worker iteratively is run on local pool of data for
an amount of time, followed by synchronizing with other
workers. In the recent embarrassingly parallel SGLD (Yang,
Chen, and Zhu 2016), a master is introduced to aggregate
the sub-posteriors on all workers into a global one. Signifi-
cant speedup has been shown on latent Dirichlet allocation
with the data-parallelism scheme. Simultaneous parallelism
of data and parameters have also been developed in (Ahn
et al. 2015; Şimşekli et al. 2015). They leverage the con-
ditional independence in matrix factorization to group data
and parameters, where each chain is run on one group. We
emphasize that our framework for parallel gradient evalu-
ation under communication constraints is distinct from the
above related works; in fact, it can be incorporated into their
works to improve performance. While (Chen et al. 2016)
developed the theory for the staleness of stochastic gradi-
ents in SG-MCMC recently, we focus on studying more ef-
ficient algorithms to reduce the communication cost. Re-
cently, (Şimşekli et al. 2018) reformulate the original op-
timization problem within the sampling framework for dis-
tributed training. They further introduced additional hyper-
parameter ”inverse temperature” to decouple the gradient
term and noise term. We can borrow similar concept to bal-
ance sampling and optimization.

In reinforcement learning, our asynchronus SG-MCMC
policy learning method also has interesting connections to
existing algorithms. Compared with Asynchronous Advan-
tage Actor-Critic (Mnih et al. 2016), we sample the weights
rather than optimize them. It corresponds to choosing a dif-
ferent current policy, which naturally favours exploration.
Recent work (Fortunato et al. 2018; Plappert et al. 2018)
showed that adding noise to weights/units of DNNs can
empirically lead to performance gain for many reinforce-
ment learning tasks. However, their theoretical justification
is lacked, and our work fill the gap.

Experimental Results
Feedforward Neural Networks
We first study FNN on the standard MNIST dataset, consist-
ing of 28×28 images (thus of 784-dimensional input vec-
tors) from 10 different classes (0 to 9), with 60000 train-
ing and 10000 test samples. Following (Blundell et al. 2015;
Li et al. 2016a), we use rectified linear units (ReLUs) (Glo-
rot, Bordes, and Bengio 2011) as the activation function, and

4177



Wallclock time (second)
0 100 200 300

Te
st

 N
LL

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Downpour SGLD

: = 1
: = 5
: = 10
: = 20

Wallclock time (second)
0 100 200 300

Te
st

 N
LL

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Downpour SGLD

: = 1
: = 5
: = 10
: = 20

Wallclock time (second)
0 100 200 300

Te
st

 N
LL

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Elastic SGHMC

: = 1
: = 5
: = 10
: = 20

Wallclock time (second)
0 100 200 300

Te
st

 N
LL

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Elastic SGHMC

: = 1
: = 5
: = 10
: = 20

(a) P = 1 (b) P = 4 (c) P = 1 (d) P = 10

Figure 2: The effects of π in downpour and elastic protocols.
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Figure 3: The effects of P in downpour and elastic protocols.

a two-layer model, 784-X-X-10, is employed, where X is the
number of hidden units for each layer. Sizes (X-X) 400-400,
800-800 and 1200-1200 are considered.
Effects of P and π We first investigate the role of the
number of workers and communication period in accel-
erating SG-MCMC, with the 400-400 network, shown in
Fig. 2 and Fig. 3, respectively, where test negative log-
likelihood (NLL) vs. wallclock time are shown. Only the
first 300 seconds are displayed for clarity. We first employ
1, 4 or 10 workers, and vary the communication period as
π = {1, 5, 10, 20}. As seen in Fig. 2(a)(c), single-worker
SG-MCMC can maintain good test NLL, verifying our ob-
servation about the equivalence of the communication pro-
tocols to thinning. When more workers (P = 4) are used,
downpour fails to tolerate delays (Fig. 2(b)), because di-
rectly incorporating the update from “long-runs” of many
workers may lead to conflicts; while the elastic protocol is
robust (Fig. 2(d)). We then study the impact of the number
of workers (Fig. 3), by varying P = {1, 2, 4, 6, 8, 10}, in
the setup of instantaneous messaging (π = 1) and periodic
messaging (π = 5). While more workers generally provide
higher speedup, there is a limit when too many workers are
involved: downpour SGLD would slow down learning, es-
pecially when communication delay exist; Elastic SGHMC
would yield less speedup gain per worker, but will be robust
to delays, thus potentially allowing for a larger number of
workers. The communication issues can be more significant
in larger systems. However, we observed little improvement
when P > 10 in our hardware setup. This could be the effect
of scheduling overhead.

In Fig. 4(a), we compare our methods with their distributed
optimization counterparts using the same communication

protocols: downpour RMSprop and elastic AMSGD (Zhang,
Choromanska, and LeCun 2015). SG-MCMC methods con-
verges slower than their optimization counterparts, this is be-
cause the injecting noise encourage SG-MCMC’s to explore
the parameter space during learning. However, the optimiza-
tion methods tend to overfit as evidenced by the NLL. Our ap-
proach alleviates overfitting by model averaging, where more
stable learning curves are obtained. Figure 4(b) shows the
NLL for FNN (various network sizes) using elastic SGHMC,
which exhibits consistent speedups.

Table 2 shows the wallclock time needed to reach a sta-
ble NLL, and best test classification errors of different al-
gorithms. SG-MCMC algorithms with downpour and elastic
protocols (P > 1) can achieve the same levels of errors as
their simpler versions (P = 1), but with significantly less
time. The proposed downpour pSGLD also outperform other
techniques developed to prevent overfitting (dropout) (Sri-
vastava et al. 2014), or capture weight uncertainty (BPB,
Gaussian and scale mixtures) (Blundell et al. 2015), and
representative stochastic optimization methods: SGD, RM-
Sprop (Tieleman and Hinton 2012) and RMSspectral (Carl-
son et al. 2015).

Convolutional Neural Networks
The CNN is tested on SVHN, which is a large dataset con-
sisting of color images of size 32× 32. The task is to recog-
nize center digits in natural scene images. A standard 2 layers
CNN is used. Figure 5(a) shows learning curves for test NLL
using downpour pSGLD and elastic SGHMC. Multiple work-
ers show consistent speedup in both NLL. To further study the
effectiveness of our method in leveraging the benefits of the
Bayesian approach, we use 20 model samples from downpour
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Table 2: Results of FNN on MNIST. For each parallel algo-
rithm, the first row shows classification error, while the sec-
ond row shows wallclock time in seconds. Results marked
with [�] and [?] are from (Blundell et al. 2015) and (Li et al.
2016a) , respectively.

Method Test Error (Wallclock Time)
400-400 800-800 1200-1200

Downpour pSGLD 1.40% 1.31% 1.25%
(P = 1) 3188 5719 7264

Downpour pSGLD 1.34% 1.32% 1.30%
(P = 4, π = 3) 2664 4994 6385
Elastic SGHMC 1.76% 1.77% 1.80%

(P = 1) 3393 5918 6776
Elastic SGHMC 1.79% 1.71% 1.77%
(P = 4, π = 10) 2256 4315 5552
BPB, Gaussian� 1.82% 1.99% 2.04%

BPB, Scale mixture� 1.32% 1.34% 1.32%
SGD, dropout� 1.51% 1.33% 1.36%

RMSprop? 1.59% 1.43% 1.39%
RMSspectral? 1.65% 1.56% 1.46%

SGD? 1.72% 1.47% 1.47%
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Figure 4: Comparison of parallel methods on FNN.
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Figure 5: Learning curves on CNN and RNN.

pSGLD algorithm to estimate predictive means and standard
deviations. In Fig. 6 (a) we embed the predictive means on the
testing data to a 2D-space with t-SNE (Van der M. and Hinton
2008), with each point as a data instance. Color indicates true
label of the point, whose size indicates the standard deviation
on the predicted label. Interestingly, large points (high uncer-
tainty) often lie in the wrong manifold, or near the boundary
of different classes. One can leverage the uncertainty infor-
mation to improve decision-making by manual judgement,
when uncertainty is high and in cases where distributed opti-
mization (Dean and others 2012; Zhang, Choromanska, and
LeCun 2015) or distillation methods (Korattikara et al. 2015)
cannot be directly applied.
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Figure 6: (a) t-SNE of SVHN; (b) A3C on cartpole..

Recurrent Neural Networks

We test the RNN with the task of character-level language
modeling on the War and Peace (WP) novel dataset (Karpa-
thy, Johnson, and Fei-Fei 2016). The training/testing sets
contain 26000/3200 characters, and the vocabulary size is
87. We consider a 1 or 2-hidden-layer RNN of dimen-
sion 128, with Long Short-Term Memory (LSTM) (Hochre-
iter and Schmidhuber 1997) or Gated Recurrent Unit
(GRU) (Cho and et al. 2014).

Figure 5(c) shows the learning curves on a 2-layer GRU
model using downpour pSGLD and elastic SGHMC. The
final test NLL in various scenarios are in SM. Interestingly,
we observe a lower NLL when using 4 workers compared
to 1 worker, i.e., standard SG-MCMC. This is perhaps due
to the existence of many local optima in large deep models,
multiple workers allow more exploration of the space, and
thus lead to improved performance.

Asynchronus Advantage Actor-Critic (A3C)

A3C (Mnih et al. 2016) uses asynchronous gradient descent
for policy optimization of DNN agents. There is no explicit
exploratory action selection scheme, and the chosen action
is always from the current policy. Therefore, we apply SG-
MCMC for direct exploration in the policy space.

Specifically, we implemented downpour pSGLD algo-
rithm for A3C. For fair comparison, RMSprop optimizer is
considered as a competitor, entropy regularisation is off, and
P = 5 workers are used for both methods. Each algorithm
runs 5 times on the Cartpole-v1 environment, and we plot
the average reward in Figure 6 (b). A3C with pSGLD con-
verges faster and achieves significant higher reward than the
RMSprop alternative.

Conclusion
We have developed two periodic communication protocols
to coordinate the information exchange in asynchronous par-
allel SG-MCMC. While the downpour protocol is theoreti-
cally supported by our finite-time convergence theory, the
elastic protocol has shown empirically to be very communi-
cation efficient. Experiments on various DNNs demonstrate
that both protocols can significantly accelerate conventional
SG-MCMC, to achieve the same or even better levels of test
performance. When applied to A3C, it naturally endows the
exploration ability, and shows higher improvement.
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