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Abstract

We study incentive compatible mechanisms for Combinato-
rial Auctions where the bidders have submodular (or XOS)
valuations and are budget-constrained. Our objective is to
maximize the liquid welfare, a notion of efficiency for budget-
constrained bidders introduced by Dobzinski and Paes Leme
(2014). We show that some of the known truthful mecha-
nisms that best-approximate the social welfare for Combi-
natorial Auctions with submodular bidders through demand
query oracles can be adapted, so that they retain truthfulness
and achieve asymptotically the same approximation guaran-
tees for the liquid welfare. More specifically, for the problem
of optimizing the liquid welfare in Combinatorial Auctions
with submodular bidders, we obtain a universally truthful ran-
domized O(logm)-approximate mechanism, where m is the
number of items, by adapting the mechanism of Krysta and
Vöcking (2012).
Additionally, motivated by large market assumptions often
used in mechanism design, we introduce a notion of compet-
itive markets and show that in such markets, liquid welfare
can be approximated within a constant factor by a random-
ized universally truthful mechanism. Finally, in the Bayesian
setting, we obtain a truthful O(1)-approximate mechanism
for the case where bidder valuations are generated as inde-
pendent samples from a known distribution, by adapting the
results of Feldman, Gravin and Lucier (2014).

1 Introduction
Imagine that you are a social planner wanting to auction-
off the seats of a local stadium at an extremely wealthy
neighborhood (i.e., people have no budget constraints for
the seats) for a big concert. As a social planner, your goal
is to allocate the seats in a way that maximizes (or, at least,
approximates as closely as possible) the happiness of the
people interested in these seats. However, different people
have different seat preferences; some people are happy with
two consecutive seats anywhere in the stadium, and some
might want a whole row. Phrased in mechanism design lan-
guage, this is a Combinatorial Auction, where you seek to
optimize the social welfare by a truthful mechanism. Com-
binatorial Auctions, like the one above, appear in many AI-
centric contexts (e.g., spectrum auctions, network routing
∗The names of the authors are in alphabetical order.
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auctions (Hershberger and Suri 2001), airport time-slot auc-
tions (Rassenti, Smith, and Bulfin 1982), etc.) and have been
a central topic in the study of Multi-Agent Systems. They
have also experienced a recent interest in the AI community
with works employing ML algorithms to overcome stan-
dard complexity problems (e.g., (Brero and Lahaie 2018;
Brero, Lubin, and Seuken 2018)).

As if this problem was not hard enough to solve, imagine
that you find out two unfortunate events; the stadium is in
fact at a working-middle class neighborhood (i.e., people do
have budget constraints) and your boss is concerned about
the effect of these budget constraints on the potential rev-
enue. Now, the objective function should balance between
the willingness and the ability of the people to pay for their
seats. Motivated by usual discrepancies between the auction
participants’ ability and willingness to pay, (Dobzinski and
Paes Leme 2014) introduced the notion of liquid welfare,
which is the minimum of an agent’s budget and valuation for
a bundle of goods. As such, maximizing the liquid welfare
achieves a reasonable compromise between social efficiency
and potential for revenue extraction (which is constrained by
the budgets).
Problem Definition. More formally, a Combinatorial Auc-
tion (CA) consists of a set U of m items to be allocated
to n bidders. Each bidder i has a valuation function vi :
2U → R≥0. Valuation functions, v, are assumed to be non-
decreasing, i.e., v(S) ≤ v(T ), for all S ⊆ T ⊆ U , and nor-
malized v(∅) = 0. For the objective of social welfare (SW),
the goal is to compute a partitioning S = (S1, . . . , Sn) of
the set of items, U , that maximizes v(S) =

∑n
i=1 vi(Si).

For the objective of liquid welfare (LW), we assume that
each bidder i also has a budgetBi ∈ R≥0 and the liquid wel-
fare that can be extracted from agent i for each set of items
S ⊆ U is v̄i(S) = min{vi(S), Bi}1. Under this objective,
the goal is to compute a partitioning S = (S1, . . . , Sn) of U
that maximizes v̄(S) =

∑n
i=1 v̄i(Si).

We focus on CAs with submodular or XOS bidders. A
set function v : 2U → R≥0 is submodular if for every
S, T ⊆ U , v(S) + v(T ) ≥ v(S ∩T ) + v(S ∪T ) and subad-
ditive if v(S) + v(T ) ≥ v(S ∪ T ). A set function v is XOS
(a.k.a. fractionally subadditive, see (Feige 2009)) if there ex-

1Slightly abusing the terminology, we refer to v̄i(S) as agent
i’s liquid valuation.
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ist additive functions wk : 2U → R≥0 such that for every
S ⊆ U , v(S) = maxk{wk(S)}. The class of submodular
functions is a proper subset of the class of XOS functions,
which in turn is a proper subset of the class of subadditive
functions.

Since bidder valuations have exponential size, a polyno-
mial (in m and n) algorithm must have oracle access to
them. A value query specifies a set S ⊆ U and receives
the value v(S). A demand query, denoted by DQ(v, U, ~p),
specifies a valuation function v, a set U of available items
and a price pj for each available item j ∈ U , and receives
the set (or bundle) S ⊆ U maximizing v(S)−

∑
j∈S pj , i.e.,

the set of available items that maximizes bidder’s utility at
these prices. For brevity, we often write p(S) =

∑
j∈S pj to

denote the price of a bundle S. Demand queries are strictly
more powerful than value queries. Value queries can be sim-
ulated by polynomially many demand queries, and in terms
of communication cost, demand queries are exponentially
stronger than value queries (Blumrosen and Nisan 2009).
Our mechanisms are polynomial-time, given access to de-
mand oracles, which in general can be NP-hard to compute.

1.1 Previous Work on Social Welfare
Truthful maximization of SW in CAs with submodular or
XOS bidders has been a central problem in Algorithmic
Mechanism Design, with many powerful results. Due to
space restrictions, we only discuss results most relevant to
our work. While discussing previous work below, we as-
sume XOS bidders and polynomial-time randomized truth-
ful mechanisms that approximate the SW, by accessing valu-
ations through demand queries, unless mentioned otherwise.

In the worst-case setting, where we do not make any fur-
ther assumptions on bidder valuations, (Dobzinski, Nisan,
and Schapira 2006) presented the first truthful mechanism
with a non-trivial approximation guarantee of O(log2m).
(Dobzinski 2007) improved the approximation ratio to
O(logm log logm) for the more general class of subaddi-
tive valuations. Subsequently, (Krysta and Vöcking 2012)
provided an elegant randomized online mechanism that
achieves an approximation ratio of O(logm) for XOS valu-
ations. (Dobzinski 2016) broke the logarithmic barrier for
XOS valuations, by providing an approximation guaran-
tee of O(

√
logm). We highlight that accessing valuations

through demand queries is essential for these strong positive
results. (Dobzinski 2011) proved that any truthful mecha-
nism for submodular CAs with approximation ratio better
than m

1
2−ε must use exponentially many value queries.

In the Bayesian setting, bidder valuations are drawn
as independent samples from a known distribution. (Feld-
man, Gravin, and Lucier 2014) showed how to obtain item
prices that provide a constant approximation ratio for XOS
valuations. These results were significantly extended and
strengthened in the recent work of (Düetting et al. 2017),
and a (truly) polynomial algorithm was provided as well.

1.2 Intuition, Main Ideas, and Contribution
Our aim is to extend these results to the objective of LW.
To this end, we exploit the fact that most of the mech-

anisms above follow a simple pattern: first, by exploring
either part of the instance in (Krysta and Vöcking 2012)
or the knowledge about the valuation distribution in (Feld-
man, Gravin, and Lucier 2014), the mechanism computes
appropriate (a.k.a. supporting) prices for all items. Then,
these prices are “posted” to the bidders, who arrive one-
by-one and select their utility-maximizing bundle, through
a demand query, from the set of available items (see Algo-
rithm 1).

The technical intuition behind the high level approach
above is nicely explained in (Dobzinski 2016, Section 1.2).
LetO = (O1, . . . , On) be an optimal solution for the SW (in
fact, any constant factor approximation suffices). The sup-
porting price of item i in O is qj = wk({j}), where wk
is the additive valuation determining the value vi(Oi) (re-
call that valuation functions are XOS). Intuitively, qj is how
much item j contributes to the social welfare of O. Then,
a price of pj = qj/2 for each item j is appropriate in the
sense that a constant approximation to v(O) can be obtained
by letting the bidders arrive one-by-one, in an arbitrary or-
der, and allocating to each bidder i her utility maximizing
bundle, chosen from the set of available items by a demand
query (see (Dobzinski 2016, Lemma 4.2)).

Hence, approximating the SW by demand queries boils
down to computing such prices pj . In the Bayesian setting,
prices pj can be obtained by drawing n samples from the
valuation distribution and computing the expected contri-
bution of each item j to a constant factor approximation
of the optimal allocation (see Section 3 and Lemma 3.4 in
(Feldman, Gravin, and Lucier 2014)). Similarly, the idea of
estimating the contribution of the items would work under
some market uniformity assumption, as the one introduced
in Definition 5.1. In the worst-case setting, if we assume
integral and polynomially-bounded valuations (i.e., that
maxi{vi(U)} ≤ md, for some constant d), a uniform price
for all items selected at random from 1, 2, 4, 8, . . . , 2d logm

results in an logarithmic approximation ratio. (Krysta and
Vöcking 2012) show how to estimate supporting prices on-
line, by combining binary search and randomized rounding.
Importantly, as long as each bidder does not affect the prices
offered to her, this general approach results in (randomized,
universally) truthful mechanisms.

Towards extending the above approach and results to the
LW, our first observation (Lemma 3.1) is that if a valuation
function v is submodular (resp. XOS), then the correspond-
ing liquid valuation function v̄ = min{v,B} is also sub-
modular (resp. XOS). Then, one can directly use the mech-
anisms of e.g., (Krysta and Vöcking 2012; Dobzinski 2016;
Feldman, Gravin, and Lucier 2014) with valuation func-
tions v̄ = min{v,B} and demand queries of the form:
DQ(min{v,B}, U, ~p) (i.e., wrt. the liquid valuation of the
bidders) and obtain the same approximation guarantees but
now for the LW. However, the resulting mechanisms are
no longer truthful; bidders still seek to maximize their util-
ity (i.e., value minus price) from the bundle that they get,
subject to their budget constraint, rather than their liquid
utility (i.e., liquid value minus price). Specifically, given a
set of items U available at prices pj , j ∈ U , a budget-
constrained bidder i wants to receive the bundle Si =
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arg maxS⊆U{vi(S) − p(S) | p(S) ≤ Bi}, and might not
be happy with the bundle S′i = arg maxS⊆U{v̄i(S)−p(S)}
computed by the demand query for the liquid valuation2.

To restore truthfulness, we replace demand queries with
budget-constrained demand queries. A budget-constrained
demand query, denoted by BCDQ(v, U, ~p,B), specifies a
valuation function v, a set of available items U , a price pj
for each j ∈ U and a budget B, and receives the set S ⊆ U
maximizing v(S) − p(S), subject to p(S) ≤ B, i.e., the set
of available items that maximizes bidder’s utility subject to
her budget constraint.

To establish the approximation ratio, we first observe
that the fact that liquid valuations are XOS suffices for
estimating supporting prices, as in previous work on the
SW. Additionally, we show that the bundles allocated
by BCDQ(v, U, ~p,B) approximately satisfy the efficiency
guarantees on the liquid welfare and the liquid utility of
the allocated bundles (see Lemma 3.3). Specifically, we ob-
serve that the approximation guarantees of mechanisms for
the SW mostly follow from the fact that a demand query
DQ(v, U, ~p) guarantees that for the allocated bundle S and
for any T ⊆ U , (i) v(S) − p(S) ≥ v(T ) − p(T ), and
(ii) v(S) ≥ v(T ) − p(T ). In Lemma 3.3, we show that
a budget-constrained demand query, BCDQ(v, U, ~p,B),
guarantees that for the allocated bundle S and any
T ⊆ U , (i) 2v̄(S) − p(S) ≥ v̄(T ) − p(T ), and
(ii) v̄(S) ≥ v̄(T )− p(T ). Using this property, we can prove
the equivalent of (Dobzinski 2016, Lemma 4.2) and also the
approximation guarantees of the mechanisms in (Krysta and
Vöcking 2012), (Feldman, Gravin, and Lucier 2014) but for
the LW.

Contribution. Formalizing the intuition above, we obtain
(i) a randomized universally truthful mechanism that ap-
proximates the LW within a factor of O(logm) (Section 4),
and (ii) a posted-price mechanism that approximates the LW
within a constant factor when bidder valuations are drawn as
independent samples from a known distribution (Section 6).
Both mechanisms assume XOS bidder valuations; the for-
mer is based on the mechanism of (Krysta and Vöcking
2012) and the latter on the mechanism of (Feldman, Gravin,
and Lucier 2014).

Motivated by large market assumptions often used in Al-
gorithmic Mechanism Design (see e.g., (Borgs et al. 2005;
Eden, Feldman, and Vardi 2017; Lu and Xiao 2017) and the
references therein), we introduce a competitive market as-
sumption in Section 5. Competitive Markets are closer to
practice, since they stand in between the stochastic and the
worst-case settings, in terms of the assumptions made. The

2For a concrete example, consider a bidder with budget B = 2
and two items a and b available at prices pa = 2 and pb = 1. As-
sume that the bidder’s valuation function is v({a}) = v({a, b}) =
10, v({b}) = 2 (and therefore, her liquid valuation is v̄({a}) =
v̄({b}) = v̄({a, b}) = 2). The bidder wants to get item a at price
2, which gives her utility 8. However, the demand query for her liq-
uid valuation function v̄ allocates item b, which gives her a utility
of 1. Clearly, in this example, the bidder would have incentive to
misreport her preferences to the demand query oracle.

main idea is that when there is an abundance of bidders, even
if we remove a random half of them, the optimal LW does
not decrease by much. Then, computing supporting prices
for all items based on a randomly chosen half of the bid-
ders, and offering these prices through budget-constrained
demand queries to the other half, yields a universally truth-
ful mechanism that approximates LW within a constant fac-
tor (Theorem 5.5).

Conceptually, in this work, we present a general ap-
proach through which known truthful approximations to the
SW, that access valuations through demand queries, can be
adapted so that they retain truthfulness and achieve similar
approximation guarantees for the LW. The important prop-
erties required are that liquid valuation functions v̄ belong
to the same class as valuation functions v (proven for sub-
modular, XOS and subadditive valuations), and that the ef-
ficiency guarantees of budget-constrained demand queries
on liquid welfare and liquid utility are similar to the corre-
sponding efficiency guarantees of standard demand queries
for liquid valuations (proven for all classes of valuations
functions). Indeed, applying this approach to the mechanism
of (Dobzinski 2016), we obtain a universally truthful mech-
anism that approximates the LW for CAs with XOS bidders
within a factor of O(

√
logm) (the details are omitted due to

space constraints). Similarly, we can take advantage of the
improved results of (Düetting et al. 2017) in the Bayesian
setting. All the missing proofs can be found in the full ver-
sion of the paper on (Fotakis, Lotidis, and Podimata 2018).

1.3 Previous Work on Liquid Welfare
Liquid welfare was introduced as an efficiency measure for
auctions when bidders are budget constrained in (Dobzin-
ski and Paes Leme 2014) (since it was known that getting
any non-trivial approximation for the SW in these cases is
impossible) and it corresponds to the optimal revenue an
omniscient seller could extract from the set of the bidders,
had he known their valuations and their budgets. Moreover,
(Dobzinski and Paes Leme 2014) proved a O(log n) (resp.
(log2 n))-approximation to the optimal LW for the case of
a single divisible item and submodular (resp. subadditive)
bidders. (Dobzinski and Paes Leme 2014) and (Lu and Xiao
2015) proved that the optimal LW can be approximated
truthfully within constant factor for a single divisible good,
additive bidder valuations and public budgets. Closer to our
setting, (Lu and Xiao 2017) provided a truthful mechanism
that achieves a constant factor approximation to the LW for
multi-item auctions with divisible auctions, under a large
market assumption. Under similar large market assumptions,
(Eden, Feldman, and Vardi 2017) obtained mechanisms that
approximate the optimal revenue within a constant factor
for multi-unit online auctions with divisible and indivisible
items, and a mechanism that achieves a constant approxima-
tion to the optimal LW for general valuations over divisible
items. However, prior to our work, there was no work on
approximating the LW in CAs (in fact, that was one of the
open problems in (Dobzinski and Paes Leme 2014)).

Our work is remotely related to the literature of budget
feasible mechanism design, a topic introduced by (Singer
2010) and studied in e.g., (Dobzinski, Papadimitriou, and
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Singer 2011; Chen, Gravin, and Lu 2011; Bei et al. 2012;
Balkanski and Hartline 2016; Wu, Liu, and Li 2018). Budget
feasible mechanism design focuses on payment optimization
in reverse auctions, a setting almost orthogonal to the setting
we consider in this work.

2 Notation and Preliminaries
The problem and most of the terminology and the notation
are introduced in Section 1. In this section, we introduce
some additional notation required for the technical part.

We use E[X] to denote the expectation of a random vari-
ableX and P[E] to denote the probability of an eventE. Let
OPT (resp. OPT) denote the optimal SW (resp. LW)3. For
some ρ > 1, which may depend on n and m, we say that a
mechanism is ρ-approximate for the optimal SW (resp. LW)
if it produces an allocation S with ρ · v(S) ≥ OPT (resp.
ρ · v̄(S) ≥ OPT).

Let a social choice function f : V̄ n → A, which maps the
set of liquid valuation functions of the bidders, V̄ : V × B,
to an allocation, A, and a payment scheme q = (q1, . . . , qn)
for this allocation. A deterministic mechanism is defined
by the pair (f, q). Our mechanisms in this work are go-
ing to be randomized, i.e., they are probability distributions
over deterministic mechanisms. The incentives desiderata
for randomized mechanisms are usually either universal
truthfulness (when for all the deterministic mechanisms,
the bidders’ dominant strategy is truthfulness) or truthful-
ness in expectation (Dobzinski, Fu, and Kleinberg 2010;
Dughmi, Roughgarden, and Yan 2011) (when bidders’ ex-
pected utilities are maximized under truthful reporting of
their private information). In this work, we are focusing on
the former, stronger notion; the one of universal truthful-
ness, under the bidders’ budget constraints.

Definition 2.1 (Universal Truthfulness under Budget Con-
straints). Let (f̃ , q̃) be a randomized mechanism over a
set of deterministic mechanisms {(f1, q1), . . . , (fk, qk)}.
Mechanism (f̃ , q̃) is universally truthful if for all i ∈
[n], κ ∈ [k] and for any v′i and any B′i, such that
qκ(v′i, v−i) ≤ B′i and qκ(vi, v−i) ≤ Bi, it holds that:

vi(f
κ(vi, Bi, v−i, B−i))− qκ(vi, Bi, v−i, B−i)

≥ vi(fκ(v′i, B
′
i, v−i, B−i))− qκ(v′i, B

′
i, v−i, B−i)

3 Approach
First, we show that if the bidder valuations are submodu-
lar (resp. XOS, subadditive), then their liquid valuations are
submodular (resp. XOS, subadditive) as well.

Lemma 3.1. Let v be a non-negative monotone submodular
(resp. XOS, subadditive) function. Then, for any B ∈ R≥0,
v̄ = min{v,B} is also monotone submodular (resp. XOS,
subadditive).

In Algorithm 1, we present a universally truthful (since
the prices offered to each bidder do not depend on her decla-
ration and demand queries maximize bidders’ utility) mech-
anism, which is a simplified version of the mechanism in

3The instance is clear from the context.

Algorithm 1 Core Mechanism
1: Fix an ordering π of bidders and set U1 = U .
2: Set initial prices for the items: ~p(1) = (p

(1)
1 , . . . , p

(1)
m ).

3: for each bidder i = 1, . . . , n according to π do
4: Let Si = DQ(vi, Ui, ~p

(i), )
5: With probability q, allocate Si to i and set Ui+1 =
Ui \ Si . Otherwise, set Ui+1 = Ui .

6: Update item prices to ~p(i+1) = (p
(i+1)
1 , . . . , p

(i+1)
m ).

7: end for

(Krysta and Vöcking 2012) for approximating SW in CAs.
Since for the LW, bidders have budgets, we replace the de-
mand queries DQ(vi, Ui, ~p

(i)) in line 4 with budget con-
strained demand queries BCDQ(vi, Ui, ~p

(i), Bi)
4. As ex-

plained in Section 1.2, Algorithm 1 with BCDQs remains
universally truthful for budget-constrained bidders.

Lemma 3.2 (Truthfulness of BCDQs). For budget-
constrained bidders, Algorithm 1 with BCDQs in line 4, is
universally truthful.

The lemma follows directly from Definition 2.1. Never-
theless, universal truthfulness is not our sole desideratum; in
each of the three settings analyzed in the following sections,
we show why mechanisms similar in spirit to Algorithm 1
with BCDQs, yield good approximation guarantees for the
LW. Before the setting-specific analyses, we relate the effi-
ciency of BCDQ to the efficiency of standard DQs for liquid
valutions.

Lemma 3.3. Let S ⊆ U be the set allocated by the BCDQ
for a bidder with valuation v and budget B. Then, for every
other T ⊆ U , the following hold: i) v̄(S) ≥ v̄(T ) − p(T )
ii) 2v̄(S)− p(S) ≥ v̄(T )− p(T ).

Proof. We will prove each claim of the lemma separately.
For claim i), notice that if p(T ) > B, then the right hand side
of the inequality will be negative and thus, the inequality
trivially holds. So, we will focus on the case where p(T ) ≤
B. We distinguish the following cases:

1. (v̄(S) = v(S) and v̄(T ) = v(T )) Hence, B ≥ v(T ).
Bundle T was considered at the time of the query and yet,
the query returned set S. Thus: v̄(S) ≥ v̄(S) − p(S) =
v(S)− p(S) ≥ v(T )− p(T ) = v̄(T )− p(T ).

2. (v̄(S) = B and v̄(T ) = B) Then, the inequality trivially
holds since: B ≥ B − p(T ) and prices are non-negative.

3. (v̄(S) = B and v̄(T ) = v(T )) The inequality holds since:
B ≥ B − p(T ) ≥ v(T )− p(T ) = v̄(T )− p(T ).

4. (v̄(S) = v(S) and v̄(T ) = B) Hence, B ≤ v(T ). Bundle
T was considered at the time of the query and yet, the
query returned set S. Thus, v̄(S) ≥ v̄(S)−p(S) = v(S)−
p(S) ≥ v(T )− p(T ) ≥ B − p(T ) = v̄(T )− p(T ).

4In all our mechanisms, if budgets are larger than the valuations
of the allocated bundles, the mechanism with BCDQ behaves iden-
tically to the mechanism with DQ (i.e., revenue and SW are not
affected by the change in the objective.)

1952



Algorithm 2 KV-Mechanism for Liquid Welfare
1: Fix an ordering π of bidders and set U1 = U .
2: Set initial prices p(1)

1 = · · · = p
(1)
m = L

4m .
3: for each bidder i = 1, . . . , n according to π do
4: Let Si = BCDQ(vi, Ui, ~p

(i), Bi)
5: With probability q, allocate Ri = Si to i and set
Ui+1 = Ui \ Si . Otherwise, set Ui+1 = Ui, Ri = ∅ .

6: Update prices ∀j ∈ Si: p(i+1)
j = 2p

(i)
j .

7: end for

This concludes our proof for claim i).
For claim ii), notice that since S is the set received from

the BCDQ, then it is affordable: v̄(S) ≥ p(S). Adding this
inequality to the inequality of claim i), we have that: 2v̄(S)−
p(S) ≥ v̄(T )− p(T ).

4 Worst-Case Setting
For the worst-case instances, adapting appropriately our
Core Mechanism, we present Algorithm 2 (based again, on
the mechanism of (Krysta and Vöcking 2012)). The only
difference is that budget-constrained bidders in Algorithm 2
are restricted to using BCDQs, instead of DQs, thus making
the mechanism universally truthful (see Section 3). Resem-
bling the analysis of (Krysta and Vöcking 2012), we show
that for 1/q = Θ(logm), Algorithm 2 achieves an approx-
imation ratio of O(logm) for the LW. First, we note that
parameter5 L is selected so that there exists only one bidder
whose liquid valuation for U (weakly) exceeds it.

Theorem 4.1. Algorithm 2 is universally truthful and for
q = 1/Θ(logm), achieves an approximation ratio of
O(logm) for the LW.

We present a series of Lemmas that will lead us natu-
rally to the proof of the Theorem. Let S = (S1, . . . , Sn)
and R = (R1, . . . , Rn) the provisional and the final allo-
cation of Algorithm 2 respectively. First, we provide two
useful bounds on v̄(S). We find it important to also discuss
an overselling variant of Algorithm 2. In the Overselling
variant, allow us to assume that for Step 5 of Algorithm 2,
q = 1 (i.e., Si is allocated to bidder i with certainty) and
Ui+1 = Ui = U (thus the name of the variant). The Over-
selling variant allocates at most k = log(4m) + 2 copies
of each item and collects a liquid welfare within a constant
factor of the optimal LW. To see that, observe that for q = 1,
after allocating k − 1 copies of some item j, j’s price be-
comes L

4m2log(4m)+1 = 2L. Then, there is only one agent
with liquid valuation larger than L who can get a copy of j.

Lemma 4.2. Let pj denote the final price of each item j.
Then, for any sets U1, . . . , Un ⊆ U of items available when
the bidders arrive, Algorithm 2 with q = 1 satisfies v̄(S) ≥∑
j∈U pj − L/4.

Proof. Since bidders are individually rational and do not vi-
olate their budget constraints, for every bidder i it holds that

5L can be computed with standard techniques, as explained in
(Krysta and Vöcking 2012).

Bi ≥
∑
j∈Si

p
(i)
j and vi(Si) ≥

∑
j∈Si

p
(i)
j . The rest of

the proof is identical to the proof of (Krysta and Vöcking
2012, Lemma 2) for b = 1. Specifically, let `(i)j be the
number of copies of item j allocated just before bidder i
arrives, and let `j be the total number of copies of item
j allocated by Algorithm 2 with q = 1. Then, using the
fact that pj = L · 2`j/4m: v̄(S) ≥

∑n
i=1

∑
j∈Si

p
(i)
j =

L
4m

∑n
i=1

∑
j∈Si

2`
(i)
j = L

4m

∑
j∈U (2`j − 1) =

∑
j∈U pj −

L/4

Lemma 4.3. For sets U1 = · · · = Un ⊆ U , the Overselling
variant of Algorithm 2 with q = 1 satisfies v̄(S) ≥ OPT −∑
j∈U pj .

Proof. Let O = (O1, . . . , On) be the optimal allocation.
From Lemma 3.3, we get that for each bidder i, v̄(Si) ≥
v̄(Oi)−

∑
j∈Oi

p
(i)
j ≥ v̄(Oi)−

∑
j∈Oi

pj , where we use that
the final price of each item is the largest one. Summing over
all bidders, we have that v̄(S) ≥ v̄(O)−

∑n
i=1

∑
j∈Oi

pj ≥
OPT−

∑
j∈U pj , where the last inequality uses the fact that

the optimal solution is feasible and thus, each item is allo-
cated at most once in O.

Lemma 4.4. The Overselling variant of Algorithm 2 with
q = 1 allocates at most log(4m) + 2 copies of each item
and computes an allocation S with liquid welfare v̄(S) ≥
3
8 OPT.

Proof. Follows directly from Lemma 4.2, Lemma 4.3 and
the fact that OPT ≥ L.

Of course, the allocation S in Lemma 4.4 is infeasi-
ble, since it allocates a logarithmic number of copies of
each item. The remedy is to use an allocation probability
q = 1/Θ(logm). For such values of q, we can plug in the
proof of (Krysta and Vöcking 2012, Lemma 6) (which just
uses that the valuation functions are fractionally subaddi-
tive) and show that for each agent i and for all A ⊆ U ,
E[v̄i(A ∩ Ui)] ≥ v̄i(A)/2. We are now ready to conclude
the proof of Theorem 4.1.

Lemma 4.5. For Algorithm 2 with q−1 = 4(log(4m) + 1),
it holds that E[v̄(S)] ≥ OPT/8 and E[v̄(R)] ≥ qOPT/8.

Proof. Let O = (O1, . . . , On) be the optimal allocation.
For each bidder i, Lemma 3.3 implies that the response Si of
BCDQ satisfies v̄i(Si) ≥ v̄i(Oi ∩Ui)−

∑
j∈Oi∩Ui

p
(i)
j , for

any Ui resulted from the outcome of the random coin flips.
Therefore, E[v̄i(Si)] ≥ E[v̄i(Oi ∩Ui)]−E[

∑
j∈Oi∩Ui

p
(i)
j ].

By the choice of q, for any bidder i, E[v̄i(Oi ∩ Ui)] ≥
v̄i(Oi)/2. Then, working with the expectations as in the
proofs of Lemma 4.2, Lemma 4.3 and Lemma 4.4, we can
show that E[v̄(S)] ≥ OPT/8. Finally, one can use linearity
of expectation and show that E[v̄(R)] = q E[v̄(S)]. The de-
tails are omitted, due to lack of space, and can be found in
(Krysta and Vöcking 2012, Lemma 4).
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5 Competitive Market
(Borgs et al. 2005) were the first ones to define a budget
dominance parameter that corresponded to the ratio of the
maximum budget of all the bidders to the value of the opti-
mum SW in the context of multi-unit auctions with budget-
constrained bidders. More recently, (Eden, Feldman, and
Vardi 2017) and (Lu and Xiao 2017) used similar notions of
budget dominance6 (termed large market assumptions) as a
means to achieve constant factor approximation to the LW in
multi-unit auctions and auctions with divisible items respec-
tively. However, for the case of divisible items, it is clear that
the definition of a large market used in the previous cases,
becomes almost void 7. Below, we first introduce our defini-
tion of Competitive Markets for indivisible goods and then,
show how one can obtain a constant factor approximation of
the optimal LW, when bidders have XOS liquid valuations.
Definition 5.1 ((ε, δ) - Competitive Market). Let 0 ≤ ε <
2 and a constant 0 ≤ δ ≤ 1/2. A market is called (ε, δ)
- Competitive Market, if for any randomly removed set of
bidders, S, with cardinality n/2, then for the remaining set
of bidders, T, it holds that:

P
[
OPTT ≥

(
1− ε

2

)
· OPT

]
≥ 1− δ (1)

where by OPTT we denote the optimal LW achieved by bid-
ders in set T.
Proposition 5.2. In an (ε, δ) - Competitive Market, let S ⊆
[n] be randomly chosen s.t. |S|= n

2 and let T = [n] \ S.
Then:

P
[{

OPTT ≥
(
1− ε

2

)
OPT

}
∩
{

OPTS ≥
(
1− ε

2

)
OPT

}]
≥ 1− 2δ

Proof. Let XS the event that OPTS ≥
(
1− ε

2

)
OPT and XT

the event that OPTT ≥
(
1− ε

2

)
OPT. Then, we have:

P [XS ∩XT] = 1− P
[
XS ∪XT

]
≥ 1− 2δ

where the inequality follows from the Union Bound.

We are now ready to state our Competitive Market mecha-
nism that will be used for approximating the optimal LW. We
note here that the greedy algorithm A is due to (Lehmann,
Lehmann, and Nisan 2006).

As usual, we denote S = (S1, . . . , Sn) the final alloca-
tion from mechanism presented in Algorithm 3. Valuations
of bidders are XOS (and so are the liquid valuations (Lemma
3.1)); let ai be the maximizing clause of Si in the liquid val-
uation v̄i of bidder i. Since ai’s are additive, for each bidder
i and j ∈ Si let qj = ai({j}). Notice that

∑
i∈[n] v̄(Si) =∑

j∈∪i∈[n]Si
qj . We denote by OPTT =

∑
j∈U q

T
j , where qTj

is the contribution of item j in OPTT. We divide the set of
all items U into two sets; the set of competitive items, de-
noted by C and the set of non-competitive items, denoted by
C =M\ C. The following lemma upper bounds the contri-
bution of non-competitive items in the optimal solution.

6Namely, ∀i ∈ [n] : Bi ≤ OPT/(mc), with c a large constant.
7See the full version for a discussion.

Algorithm 3 Competitive Market (CM) Algorithm
1: Divide the bidders into sets S,T uniformly at random,

s.t., |S|= n
2 = |T|.

2: Run the greedy algorithmA for bidders in S and denote
the solution obtained by AS.

3: for j ∈ U do
4: Set pj = 1

2β v̄
(
AS
j

)
, where β > 1 is a constant

5: end for
6: Fix an internal ordering of bidders in T, π, and set U1 =
U .

7: for each bidder i ∈ T arriving according to π do
8: Let Si = BCDQ(vi, Ui, ~p).
9: Set Ui+1 = Ui \ Si.

10: end for

Lemma 5.3. Let C = {j|qTj >
v̄(AS

j)

β } for constant
β > 1. Then,

∑
j∈C q

T
j ≤ ε

2(β−1) OPT and
∑
j∈C q

T
j ≥

β(2−ε)−2
2(β−1) OPT.

Proof. From Definition 5.1, it holds with constant probabil-
ity (w.c.p) that: OPT ≥

∑
j∈C q

T
j +
∑
j∈C q

T
j =

∑
j∈U q

T
j ≥(

1− ε
2

)
· OPT. Let SC ⊆ S be the set of the bidders that are

allocated the non-competitive items from the greedy algo-
rithm A when running on set S. Then, in the augmented set
T ∪ SC , there exists an allocation Q8 with liquid valuation,

v̄(Q) ≥
∑
j∈C

qTj +
∑
j∈C

v̄
(
AS
j

)
(2)

and therefore we have w.c.p:

OPT ≥ v̄(Q) ≥
∑
j∈C

qTj +
∑
j∈C

v̄
(
AS
j

)
≥
∑
j∈C

qTj + β
∑
j∈C

qTj

≥
(

1− ε

2

)
OPT + (β − 1)

∑
j∈C

qTj

Re-arranging the latter and using the fact that
∑
j∈C qj +

ε
2(β−1) OPT ≥

∑
j∈U q

T
j ≥

(
1− ε

2

)
OPT, then, for

the items in C it holds w.c.p that:
∑
j∈C q

T
j ≥

β(2−ε)−2
2(β−1) OPT.

In the next Lemma, we prove a lower bound on the con-
tribution of competitive items to the solution obtained by the
greedy algorithm, with respect to OPT.

Lemma 5.4.
∑
j∈C v̄

(
AS
j

)
≥ 2(β−1)−ε·(3β−1)

4(β−1) OPT.

Proof. Combining Inequality (2) and Lemma 5.3 we get
that

∑
j∈C v̄

(
AS
j

)
≤ βε

2(β−1) OPT. Algorithm A pro-
vides a 2-approximation to the optimal LW of set S
(Lehmann, Lehmann, and Nisan 2006), so w.c.p we have:

8AllocationQ is realized by allocating all items in C to bidders
in T that also had them in the OPTT allocation and all items in C to
the bidders in SC that had them in the allocation of the greedy A.
The claim is completed by submodularity.
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∑
j∈C v̄

(
AS
j

)
+
∑
j∈C v̄

(
AS
j

)
≥ 1

2 OPTS ≥
1− ε

2

2 OPT. Com-
bining the last two equations, we get the result.

Theorem 5.5. The CM Algorithm is universally truthful and
achieves, in expectation, a constant approximation to the op-
timal LW, i.e., E [v̄ (S)] ≥ (1− 2δ) · 2(β−1)−ε·(3β−1)

16β(β−1) OPT.

Proof. Since the bidders that control the prices being posted
belong to set S and they never get any item, it is their
(weakly) dominant strategy to report their valuations and
their budgets truthfully. Furthermore, the bidders that are
buying under the said posted prices belong to set T and they
make BCDQs, which we shown to be truthful. Finally, the
bidders are uniformly at random split at sets S and T.

For each item j ∈ C we have qTj > v̄(AS
j)/β.

Therefore, there exists an allocation for bidders in T and
items in C that is supported by prices p1, . . . , pm, where
pj = v̄(AS

j)/β. Thus, a modification of (Dobzinski 2016,
Lemma 4.2) implies that if we we set p′j = pj/2, for
each j ∈ C, and run a fixed price auction in T with
prices p′1, . . . , p

′
m, we get that v̄(S) ≥

∑
j∈C pj/4. Using

the latter, along with the prices of the items, we have that
v̄(S) = 1

4β

∑
j∈C v̄(AS

j) ≥
2(β−1)−ε(3β−1)

16β(β−1) OPT, where the
last inequality is due to Lemma 5.4. Thus, we conclude that
E [v̄ (S)] ≥ (1− 2δ) 2(β−1)−ε·(3β−1)

16β(β−1) OPT.

6 Bayesian Setting
The Bayesian Setting offers a great middle ground between
the unstructured worst-case instances and the very structured
Competitive Markets. In this setting, let ~v = (v1, . . . , vn) be
a profile of bidder valuations and B = (B1, . . . , Bn) a pro-
file of bidder budgets. Assume that the bidders’ valuations
are drawn independently from distributions V1, . . . ,Vn and
the budgets from distributions B1, . . . ,Bn. For simplicity,
let us assume that their liquid valuations are drawn inde-
pendently from distributionsD1, . . . ,Dn. We will denote by
D = D1×. . .×Dn the product distribution where liquid val-
uations profiles, v̄ = (v̄1, . . . , v̄n), are independently drawn
from.

We are going to show that the results presented in (Feld-
man, Gravin, and Lucier 2014) can be extended for budget-
constrained bidders. Specifically, we are going to show that,
if liquid valuations are fractionally subadditive, then we can
create appropriate prices such that, when presented to the
bidders in a posted-price mechanism and bidders are making
BCDQs, then we can obtain universally truthful constant-
factor approximation mechanisms for the LW in Bayesian
CAs. Our Lemma 6.2 establishes the existence of such ap-
propriately scaled prices. The key component activating our
results is that instead of reasoning about the utility achieved
from the bundle purchased by bidder i (as received by the
BCDQ), we instead have to use Lemma 3.3. We also note
that using our techniques one could even achieve the bet-
ter approximation guarantees presented by (Düetting et al.
2017). Their analysis is significantly more complex, how-
ever, and we omit it in the interest of space.
Theorem 6.1. Let distribution D over XOS liquid valua-
tion profiles be given via a sample access to D. Suppose

that for every v̄ ∼ D, we have: i) black-box access to a
LW maximization algorithm, ALG9 ii) an XOS value query
oracle (for liquid valuations sampled from D)10. Then, for
any ε > 0, we can compute item prices in POLY(m,n, 1/ε)
time such that, for any bidder arrival order, the expected
liquid welfare of the posted price mechanism is at least
1
4 Ev̄∼D[v̄(ALG(v̄))] − ε, where by ALG(v̄) we denote the
solution produced by algorithm ALG.

Lemma 6.2. Given a distribution D over XOS liquid valu-
ations, let ~p be the price vector s.t. pj = 1

2 Ev̄∼D[LWj(v̄)].
Let ~p′ be any price vector such that |p′j − pj |< δ for all
j ∈ [m]. Then, for any arrival order, π, bidders buying bun-
dles by making BCDQs under prices ~p′ results in expected
liquid welfare at least 1

4 Ev̄∼D[v̄(ALG(v̄))]− mδ
2 .

7 Conclusion
In real-life auctions, bidders are always constrained by bud-
gets, which we tend to overlook due to the technical diffi-
culties that they add. The role of budgets in welfare/revenue
optimization is amplified in CAs, where bidders have richer
valuations and hence, studying budgeted CAs is a step to-
wards bridging the gap between the theory on truthful mech-
anism design for CAs and constraints faced in practice. In
this work, we showed how the liquid welfare can be ap-
proximated in CAs where bidders are budget-constrained in
three settings: worst-case, Competitive Markets and stochas-
tic. The most meaningful question that arises from our work
(apart, of course, from the ever existent one of lowering the
approximation guarantee in worst-case instances) is related
to the competitive markets. We conjecture that the condition
that we provide can be made even weaker, and leave it to
future research.

Finally, our results can also be used to extend a variety of
already known results in CAs without budgets, to CAs with
budget-constrained bidders. For example, Lemma 3.3 (with
some changes in the constants of (Dütting and Kesselheim
2017)) implies a constant factor approximation for best re-
sponse dynamics in XOS CAs with budgeted bidders, that
apply after a single round of bid updates.
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an additive function Ai(·), such that (i) v̄i(S) ≥ Ai(Ŝ) for any
Ŝ ⊂ [m] and (ii) v̄i(T ) = Ai(T ).
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