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Abstract

Practitioners of data mining and machine learning have long
observed that the imbalance of classes in a data set negatively
impacts the quality of classifiers trained on that data. Numer-
ous techniques for coping with such imbalances have been
proposed, but nearly all lack any theoretical grounding. By
contrast, the standard theoretical analysis of machine learn-
ing admits no dependence on the imbalance of classes at all.
The basic theorems of statistical learning establish the num-
ber of examples needed to estimate the accuracy of a classi-
fier as a function of its complexity (VC-dimension) and the
confidence desired; the class imbalance does not enter these
formulas anywhere. In this work, we consider the measures
of classifier performance in terms of precision and recall, a
measure that is widely suggested as more appropriate to the
classification of imbalanced data. We observe that whenever
the precision is moderately large, the worse of the precision
and recall is within a small constant factor of the accuracy
weighted by the class imbalance. A corollary of this obser-
vation is that a larger number of examples is necessary and
sufficient to address class imbalance, a finding we also illus-
trate empirically.

1 Introduction
One of the primary concerns of statistical learning theory is
to quantify the amount of data needed to reliably and ac-
curately learn an unknown function that belongs to a given
family, such as halfspaces, decision trees, neural networks,
and so on. This quantity is often referred to as the sample
complexity of learning the family of functions. The founda-
tional results of statistical learning theory, first established
by Vapnik and Chervonenkis (1971), assert that accurate
learning of functions is possible using an amount of train-
ing data that depends only on a parameter of the family of
functions known as the VC-dimension. In particular, for dis-
crete functions, this VC-dimension parameter is no larger
than the number of bits needed to specify a member of the
family in a given domain; often, it is proportional to this
“description size” or the “number of parameters.” More-
over, it is known that (up to the leading constant) the same
number of examples is also necessary to reliably identify
a function that fits the data accurately (Blumer et al. 1989;
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Ehrenfeucht et al. 1989; Anthony and Bartlett 1999; Han-
neke 2016). Thus, the central message of statistical learn-
ing theory is that this notion of model size controls the
amount of data inherently needed for learning. In particu-
lar, the same quantity suffices regardless of the distribution
of the actual data, and thus regardless of the degree of class
imbalance (“rarity” of positive examples) and so on.

In spite of the seemingly complete theoretical picture that
these theorems paint, practitioners in data mining in par-
ticular have been long concerned with the effects of class
imbalance or rarity of classes in training data (Weiss 2004;
He and Garcia 2009). These concerns led to much work on
attempts to reduce the class imbalance by either dropping
examples or synthesizing new ones. A crucial clue to the na-
ture of the problem was provided by a substantial empirical
study by Weiss and Provost (2003): In a study of a fixed de-
cision tree learning algorithm on twenty-six data sets, they
determined that indeed, the use of the natural class distri-
bution provided close to the optimal accuracy (error rate)
across almost all of the data sets, as standard learning the-
ory suggests. But, on the other hand, they also found that
for another metric – the area under the ROC curve (AUC)
– the quality of the learned decision tree was significantly
affected by the class imbalance of the data. Thus, their find-
ings suggested that the sample complexity of some metrics
of classifier quality, such as AUC, might depend on class
imbalance, while others such as accuracy do not. And in-
deed, Agarwal and Roth (2005) established that the sample
complexity of learning under the AUC metric does depend
on the class imbalance. More recently, Raeder et al. (2012)
evaluated a variety of metrics and found empirically that ev-
ery metric they considered except for accuracy had a depen-
dence on the class imbalance. While the empirical studies
leave open the question of whether these observations are
artifacts of the particular algorithms used, we establish here
that such a dependence is also inherent for the precision and
recall of the learned classifier.

Our main technical contribution is actually a simple ob-
servation: We note that a simultaneous bound on the preci-
sion and recall when precision is greater than 50% is equiv-
alent to a bound on the accuracy that is scaled by the base
positive rate. As a corollary, we obtain tight bounds on the
sample complexity of precision-recall bounds. In particular,
we find that the base positive rate (i.e., the class imbalance)
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enters these expressions as an additional penalty over the
usual expressions for accuracy.

A precise relationship between precision, recall, and ac-
curacy (that holds with equality) was discovered previously
by Alvarez (2002), and our bounds could also be derived
easily from Alvarez’s equation. Interestingly, however, Al-
varez did not interpret the consequences of his relation for
the amount of data needed, which is our main contribution.
Davis and Goadrich (2006) similarly showed that classi-
fiers that dominate in the usual ROC space also dominate in
precision-recall and vice-versa. Actually, results by Cortes
and Mohri (2004) imply that precision-recall bounds are
fundamentally different from AUC: for a fixed class imbal-
ance and accuracy, various ranking functions may feature
substantially different AUC scores, in contrast to precision-
recall bounds. Hence, Davis and Goadrich’s result is incom-
parable to ours.

Theoretical upper bounds on the sample complexity that
is sufficient to achieve a given bound on the precision and
recall were established previously by Liu et al. (2002) as
part of a more general bound for partially supervised clas-
sification and by Valiant (2006); similar upper bounds were
established for the related “Neyman-Pearson classification
task,” which is essentially an agnostic variant of learning
with precision-recall bounds, by Cannon et al. (2002). Our
contribution is that we show that the first set of bounds (for
the realizable setting) cannot be substantially asymptotically
improved and such a large amount of data is inherently nec-
essary.1 To our knowledge, the only lower bound for any
such task was obtained by Scott and Nowak (2005), who
note that the false-negative and false-positive rates converge
no faster than the overall error rate. Our quantitative conclu-
sions are also similar to those obtained under the heursitic
calculation used by Raeder et al. (2012) which simply calcu-
lated the number of examples necessary to get, e.g., a train-
ing set containing 100 positive examples. This turns out to
be a reasonable rule of thumb for, e.g., simple classifiers on
data with 10–100 attributes, but we stress that it is not simply
the number of positive examples that are relevant, as the vast
number of negative examples is necessary to rule out the var-
ious classifiers with an unacceptably high false alarm rate.
In any case, we provide formal justification, showing that
this number of examples is inherently necessary for success
at the task in general, whereas the “100 positive examples”
heuristic was largely grounded in intuition until now.

At a high level, our main observation is that achieving
high precision and recall demands that our training data
scales with the class imbalance; in particular, the methods
for attempting to “correct” the imbalance by sub-sampling,
or over-sampling, or generating new synthetic data dis-
cussed above (all of which are topics of intense interest
in certain areas) fundamentally should not provide any im-
provement in precision-recall in general. By contrast, if we
have sufficient training data (to achieve high accuracy), then

1We observe that a small improvement over the bound obtain-
able from Liu et al. follows immediately from Hanneke’s (2016)
improved bound for accuracy, and we likewise strengthen Valiant’s
upper bound from representation length to VC-dimension.

any standard learning method will do, without need for these
special “imbalance-correcting” methods. We illustrate this
finding empirically: We observe that for several standard off-
the-shelf methods and several data sets featuring significant
class imbalance, these imbalance-correcting methods do not
provide reliable improvements in precision and recall, but
adding more data always does significantly improve preci-
sion and recall. We found that the only classifiers for which
the imbalance correction methods frequently improve pre-
cision and recall are decision tree methods (here, Random
Forest), where the techniques were originally developed.

But, we argue that in many applications, high precision is
of the utmost importance, and in particular, in applications
that suffer a severe class imbalance. We discuss two example
domains here, one of hospital early-warning systems, and
another in machine translation. The upshot is, unfortunately,
these applications simply inherently require enormous data
sets. This also partially explains a finding from the work on
machine translation (Brants et al. 2007) that, from the usual
standpoint of accuracy, is a bit puzzling: namely, as the size
of the training data increased into the hundreds of billions
of examples, Brants et al. found continued improvement in
the quality of translations produced by a relatively simple
method. The usual accuracy bounds suggest that the amount
of training data necessary should only scale proportionally
to the size of the model trained, and it is not clear why the
rule for translation should need to be so large. But, we ob-
serve that to even solve the problem of identifying which
words to use in machine translation, we require high preci-
sion (since most words are infrequently used), and hence our
bounds establish that such an enormous number of examples
is precisely what we should expect to require.

The rest of our paper is structured as follows: in Section
2, we discuss the importance of high-precision classifiers; in
Section 3, we quantify the relationship between precision-
recall and accuracy, derive sample complexity bounds for
precision-recall, and discuss the need to use a large training
data set; in Section 4, we present our experiments illustrating
how using large training data improves the precision-recall
on an imbalanced data set, while methods designed to sim-
ply correct the class imbalance (e.g., from different data sets)
generally do not achieve satisfactory precision and/or recall;
in Section 5, we give our conclusions plus some advice for
practitioners and finally, in Section 6, we sketch some pos-
sible directions for future work.

2 The Importance of Precision
Accuracy is the simplest and most widely used metric to
measure the performance of a classifier. However, accuracy
is not always a good metric, especially when the data is im-
balanced. The basic problem is that when the negative class
is dominant, we can achieve high accuracy merely so long
as we predict negative most of the time. As a consequence,
even when a highly accurate classifier produces a positive
prediction, it may still be that the negative class is (much)
more likely. Such situations are characterized by precision
of 50% or less. In many applications this is highly undesir-
able.
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A first example concerns learning for alarm systems.
Following a review by Amaral (2014), we find that early-
warning systems for use in hospitals feature significant class
imbalance and crucially rely on nontrivial precision, or else
the alarms are ignored. We expect that this is broadly true of
alarm systems in general.

A second example where the data is highly imbalanced
(in a sense) and high precision is important can be found in
machine translation. Here, we suppose that our training data
consists of parallel texts in two languages, and we would like
to train a system that, when given text in a source language,
produces an equivalent text in the target language. Brants
et al. (2007) designed a fairly successful system that, at its
heart, simply counts the co-occurrence of n-grams between
the two texts and then performs some smoothing. The strik-
ing finding of Brants et al. was that a relatively simplistic
scheme could achieve state-of-the-art performance merely
so long as the amount of training data was enormous; in par-
ticular, they found constant improvement when training their
model on up to hundreds of billions of examples. It would
not be so clear why so much data would be required if ac-
curacy were the only issue, as there is no clear reason why
many gigabytes of data should be necessary to specify the
rules for translation.

The answer, of course, is that accuracy is not the key mea-
sure in this case. Let us simply focus on the question of
whether or not it is appropriate to use a given word in a sen-
tence of the translated document, perhaps given a sentence
in the source language together with its context. In this case
we have a simple binary classification task per word; but,
we observe that most sentences contain infrequently used
words. Intuitively, words that are informative and specific
should be used in specific circumstances. We confirmed this
intuition in practice by investigating the New York Times
Annotated Corpus (Sandhaus 2008), a standard corpus con-
taining more than 1.8 million articles. We first counted the
frequency (with respect to sentences) of words in the cor-
pus, that is, what fraction of sentences used that word. We
take this fraction as an estimate of the imbalance of correct
classifications for our function that predicts whether or not
words should be used in the translation. Then, in order to
translate a sentence, we must be able to correctly predict the
words that should be used in the translated sentence. In par-
ticular, it will follow from our bounds in Section 3 that it is
the frequency of the rarest word in the target sentence that
determines the amount of data we require to reliably trans-
late the sentence. As anticipated, for most sentences, this is
quite high.

Concretely, we examine the fraction of sentences in which
the rarest word appears in at least a µ-fraction of the sen-
tences in the corpus; equivalently, as we will see in Sec-
tion 3, this is the fraction of sentences for which an overhead
of 1/µ in the sample complexity (over what would suffice
for high-accuracy learning) suffices to achieve high preci-
sion and recall. Since we were interested in the implications
for translation, we used the Natural Language Toolkit (Bird,
Klein, and Loper 2009) to filter out proper nouns for which
(1) usage is likely abnormally infrequent and (2) various
methods of directly rendering the word in a target language

by sound are frequently used for translation.2 The results ap-
pear in Figure 1: as a simple point of reference, observe that
fewer than five in ten sentences have an additional overhead
of less than 1.2 million. This still gives no clear indication
of how much data would be necessary to reach 95% of sen-
tences, for example, except that it is surely well beyond 1.2
million examples, and likely beyond 12 billion (if we sup-
pose≈ 104 examples is necessary for learning such a model
to high accuracy).

Figure 1: Proportion of sentences using only words occur-
ring in a µ-fraction of sentences (and thus, learnable with
overhead 1/µ) in the New York Times corpus (Sandhaus
2008). Fewer than 55% of sentences use only words that are
sufficiently common to be learned with an overhead of any
less than a factor of 1.2 million (see Section 3).

Now, we observe that unfortunately, at least moderately
high precision and recall is important for this task. Indeed,
given the high degree of imbalance, it is possible to achieve
very high accuracy by simply predicting that these rare
words are never used, or perhaps only used once in 50 mil-
lion sentences—in other words, by sacrificing recall. This
is of course undesirable, since then our machine translation
system may not learn to use such informative words at all.
It is also possible for the predictor to achieve high accuracy
but low precision if it produces even a small number of false
positives, that is nevertheless of the same order as the fre-
quency with which the word should actually be used. In this
case, the use of the word in the translation is uninforma-
tive. That is, it may not provide any indication that the word
should actually have appeared in the target text. This is also
clearly undesirable, since it means that the use of a word is
not connected to its context, i.e., it is “meaningless” (from an
information-theoretic standpoint). As we will see next, as a
consequence of our sample complexity lower bounds, if the
training set does not contain billions of examples, then it is
likely that either the recall is very low and hence the word is
almost never used, or else the prediction that a word should

2Although this may not have filtered out 100% of proper nouns,
we surely cannot fall back on a simpler method of translation if we
cannot detect that such a proper noun is being used.
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be used in the translated document may have low precision,
and hence our word choice may be meaningless.

3 Precision-Recall Is Equivalent to
Imbalance-Weighted Accuracy

We now derive our main techincal bounds relating precision
and recall to accuracy, and relate these to the sample com-
plexity of classification tasks. We stress that while these are
technically very simple, they have serious consequences for
settings such as those discussed in Section 2.

Relating Accuracy, Imbalance, Precision, and
Recall
Suppose thatD is a distribution over examples with Boolean
labels (x, b) ∈ X × {0, 1} with a base positive rate of
µ = PrD[b = 1]. For a hypothesis h : X → {0, 1}, the
accuracy of h is Pr[h(x) = b]

def
= 1 − εacc ; the precision of

h is PrD[b = 1|h(x) = 1]
def
= 1 − εprec, and the recall of

h is PrD[h(x) = 1|b = 1]
def
= 1 − εrec. One often uses the

expressions

tpr
def
= Pr

D
[b = 1 ∧ h(x) = 1] fpr

def
= Pr

D
[b = 0 ∧ h(x) = 1]

tnr
def
= Pr

D
[b = 0 ∧ h(x) = 0] fnr

def
= Pr

D
[b = 1 ∧ h(x) = 0]

and it may be verified that our definitions above are equiva-
lent to the perhaps more common expressions

1− εprec =
tpr

tpr + fpr
1− εrec =

tpr

tpr + fnr

1− εacc = tpr + tnr µ = tpr + fnr

Motivated by settings such as those discussed in Sec-
tion 2, we will focus on the problem of learning classifiers
with precision at least 50%. It turns out that in this case, pre-
cision and recall are closely related to the (accuracy) error,
scaled by the class imbalance:

Theorem 1 Suppose h : X → {0, 1} has precision

greater than 1/2 in D. Then εmax
def
= max{εprec, εrec} sat-

isfies µεmax ≤ εacc ≤ µ(εrec + 1
1−εprec

εprec). In particular,
εacc ≤ 3µεmax.

Proof: Note that εrec = fnr
tpr+fnr = fnr

µ , and since

εprec = fpr
tpr+fpr , (1 − εprec)fpr = εprectpr and thus

fpr ≤ µ 1
1−εprec

εprec since tpr ≤ µ. So, together,

εacc = fpr + fnr ≤ µ(εrec +
1

1− εprec
εprec).

For the lower inequality, we already immediately have
εrec = fnr

µ ≤ εacc
µ . Furthermore, since 1 − εprec > 1/2,

tpr + fpr < 2tpr, and hence tpr > fpr. We also find,
since εacc

µ = fpr+fnr
tpr+fnr and for c ≥ 0 and tpr > fpr ≥ 0

generally fpr+c
tpr+c ≥

fpr
tpr , εaccµ ≥ fpr

tpr ≥
fpr

tpr+fpr = εprec.

And so therefore, together, we obtain εmax ≤ εacc
µ .

Sample Complexity Bounds For Precision-Recall
We now obtain the asymptotic sample complexity of si-
multaneously achieving high precision and high recall as a
corollary of Theorem 1 and the known bounds for accuracy.
Again, the VC-dimension, introduced by Vapnik and Cher-
vonenkis (1971), is the parameter controlling these bounds:

Definition 2 (VC-dimension) We say that a set of points in
a domain X is shattered by a set of Boolean classifiers C
on the domain X if every possible labeling of the set is ob-
tained by some classifier in C. We then say that C has VC-
dimension d ∈ N if some set of d points in X is shattered by
C, and no set of d+ 1 points is shattered. If for every d ∈ N
every set of d points is shattered by C, then we say that C has
infinite VC-dimension (“d =∞”).

The asymptotic sample complexity of obtaining a given
accuracy is now known exactly:

Theorem 3 (Hanneke 2016) For a family of classifiers of
VC-dimension d, with probability 1− δ, every classifier that
is consistent with O

(
1
ε (d+ log 1

δ )
)

examples drawn from a
distribution D on labeled examples, has error rate at most ε
(accuracy 1− ε) on D.

A matching lower bound was proved in two parts; first,
a Ω( 1

ε log 1
δ ) lower bound was obtained by Blumer et al.

(1989), and subsequently an Ω(d/ε) bound was proved by
Ehrenfeucht et al. (1989). Together, these yield a matching
lower bound:

Theorem 4 (Blumer et al. and Ehrenfeucht et al.) For a
family of classifiers of VC-dimension d, there is a constant
δ0 such that for δ ≤ δ0, unless Ω

(
1
ε (d+ log 1

δ )
)

examples
are drawn from a distribution D on labeled examples, with
probability at least δ some classifier in the family with ac-
curacy less than 1 − ε on D is consistent with all of the
examples.

Since any classifier with precision greater than 1/2 and
accuracy 1 − εacc must have precision and recall at least
1 − εacc

µ , we find that to obtain precision and recall 1 −
εmax, it suffices to simply learn to accuracy 1 − µεacc, i.e.,
O
(

1
µεmax

(d+ log 1
δ )
)

examples suffice.3

Corollary 5 (Upper bound for precision-recall) For any
family of Boolean classifiers C of VC-dimension d on a
domain X and any distribution D on X , suppose we are
given examples drawn from D labeled by c ∈ C such that
Pr[c(x) = 1] = µ. Then with probability 1 − δ any clas-

sifier c′ ∈ C that is consistent with O
(

1
µεmax

(d+ log 1
δ )
)

examples achieves precision and recall 1− εmax.

And conversely, since (unless the precision is less than
1/2) either the precision or recall is at most 1 − εacc

3µ , we

find that unless Ω
(

1
µεmax

(d+ log 1
δ )
)

examples are drawn
from D, if δ < δ0, then with probability at least δ, some
hypothesis that is consistent with all of the examples has

3Note that although Theorem 1 would not apply to εmax > 1/2,
the big-O can hide a factor of 2, so that we still get precision> 1/2.

4042



accuracy less than 1− 3µεmax; hence some such hypothesis
has either precision or recall that is less than 1− εmax:

Corollary 6 (Lower bound for precision-recall) For a
family of classifiers of VC-dimension d, there is a con-
stant δ0 such that for δ ≤ δ0 and εmax < 1/2, unless

Ω
(

1
µεmax

(d+ log 1
δ )
)

examples are drawn from a distri-
bution D on labeled examples, with probability at least δ
some classifier in the family with precision or recall less
than 1− εmax on D is consistent with all of the examples.

Recap As we noted in the introduction, similar upper
bounds have been proved for a variety of cases by many au-
thors, and here we can exploit the recent work by Hanneke
to unify and/or improve all such bounds for the “realizable”
case. A perhaps more important novelty here is the (match-
ing) lower bound, which had not been studied previously.
As we will discuss shortly, the presence of the 1/µ penalty
in these bounds is quite significant: it means that
1. in contrast to learning under the accuracy objective, when

we seek precision greater than 50%, class imbalance does
impose a cost on learning, and

2. the problem of coping with imbalanced data is entirely
one of learning to unusually high accuracy, and hence one
of collecting a large enough data set since training set size
is what controls generalization error.4

We note that these bounds also imply that the algorithms
for learning to abduce k-DNFs of Juba (2016) have optimal
sample complexity, when we consider the maximum “plau-
sibility” (equal to the true positive rate) for distributions ac-
tually labeled by a k-DNF. The same sample complexity
lower bound also applies to the related problem of condi-
tional linear regression under the sup norm (Juba 2017).

We can similarly obtain bounds for the sample complexity
of achieving a given bound εmax on the precision and recall
in agnostic (a.k.a. non-realizable) learning, using the known
bounds in that setting. Specifically, we obtain the following
bounds for approximate agnostic learning

Corollary 7 (c.f. Anthony and Bartlett 1999) There is a
constant δ0 > 0 such that the following holds. For any
family of Boolean classifiers C of VC-dimension d on a do-
main X and any distribution D over X ×{0, 1}, suppose
we are given examples drawn from D such that Pr[b =
1] = µ and minc∗∈C Pr[c∗(x) 6= b] = ε∗acc. Put ε∗prec =
Pr[b 6= 1|c∗(x) = 1], ε∗rec = Pr[c∗(x) 6= 1|b = 1], and
ε∗max = max{ε∗prec, ε∗rec}. Then for δ < δ0, α > 1, and

3αε∗max < 1/2, Θ
(

1
µε∗max(α−1)2

(d+ log 1
δ )
)

examples are
necessary to return a classifier that with probability 1 − δ
satisfies εmax ≤ (α/3)ε∗max and sufficient to return a classi-
fier that with probability 1− δ satisfies εmax ≤ 3αε∗max.

Proof: We first observe that indeed, ε∗acc ≤ 3µε∗max and
µε∗max ≤ ε∗acc since the corresponding c∗ ∈ C attaining the

4In particular, this conclusion follows when the generalization
error is the primary component of test error. This is true by defini-
tion in the “realizable” setting where zero training error is always
achievable, and is often true in practice more generally.

minimum on the RHS can be used to bound the LHS in each
case. Therefore, since O

(
1

ε∗acc(α−1)2
(d+ log 1

δ )
)

examples
suffice to learn a classifier with εacc ≤ αε∗acc, we find that
since ε∗acc ≤ 3µε∗max and µεmax ≤ εacc, that for such a
classifier εmax ≤ 3αε∗max.

Similarly, if we do not use Ω
(

1
ε∗acc(α−1)2

(d+ log 1
δ )
)

ex-
amples there is a distribution D such that with probability
at least δ we return a classifier with εacc > αε∗acc. For this
distribution, since ε∗acc ≥ µε∗max, with probability at least δ
we are returning a classifier with εacc > µαε∗max. Now, for
this classifier, εmax ≥ εacc

3µ , so it has εmax > αε∗max/3.
Since the known time-efficient algorithms for agnostic

learning (Awasthi, Blum, and Sheffet 2010, e.g.) obtain an
approximation factor α that grows polynomially with the
dimension (so in particular α = ω(1)), these bounds are
adequate to understand how many examples are asymptoti-
cally necessary for such guarantees; indeed, Daniely (2016)
shows evidence that polynomial-time algorithms for agnos-
tic learning of halfspaces (or any stronger class) must suffer
an approximation factor of α = ω(1), so it seems likely
that these bounds address all such algorithms. In particu-
lar, we observe that they again pay the same 1/µ penalty as
in realizable learning. Nevertheless, it would still be nice to
understand the sample complexity of precision and recall for
agnostic learning more precisely. In particular, we do not ob-
tain any bounds for the additive-error agnostic learning task.
We leave this for future work.

4 Experiment
To verify our theoretical conclusion that using more train-
ing data is necessary to cope with class-imbalance, we per-
formed an experiment on a severely imbalanced data set,
comparing the performance (i.e. precision and recall) be-
tween various techniques that are used for dealing with im-
balanced data and training on a larger data set without using
these techniques. Such techniques include: Random under-
sampling, which randomly removes samples from the major-
ity class; Random oversampling, which randomly expands
the minority class (He and Garcia 2009); Easy Ensemble
(Liu, Wu, and Zhou 2006), which uses random subsets of
the majority class to improve balance and form multiple
classifiers; NearMiss (Zhang and Mani 2003), which applies
K-Nearest Neighbor (K-NN) to choose a number of ma-
jority examples around each minority example. In addition,
we also applied the Synthetic minority oversampling tech-
nique (SMOTE) (Chawla et al. 2002), which makes up data
based on the feature space similarities among minority ex-
amples, with the integration with condensed nearest neigh-
bor (CNN), edited nearest neighbor (ENN), Tomek links
(Batista, Prati, and Monard 2004), and support vector ma-
chines (SVM) (Akbani, Kwek, and Japkowicz 2004).

Data Sets In this experiment, we ran all methods on three
data sets from the UCI repository, including all of the data
sets that were used by Liu et al. (2006). We excluded data
sets that have less than 4000 examples or imbalance ratio
(the ratio of the size of the majority class to that of the mi-
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Table 1: Data set characteristics

Dataset Size Attributes Target Maj/Min
abalone 4,177 8 Ring = 7 9.7:1
letter 20,000 16 A 24.3:1
satimage 6,435 36 class 4 9.3:1
drug discovery 1,062,230 152 class 1 16.1:1

nority class) less than 5. In addition, we also added a large
data set (about 1 million examples) that was used for a vir-
tual screening task in drug discovery (Garnett et al. 2015).
Key characteristics of these data sets are summarized in Ta-
ble 1. For the scope of this experiment, for all data sets, we
merged all majority classes into a single majority class.

Experiment Setup For this experiment, we used the
Python scikit-learn library (Pedregosa et al. 2011) with the
imbalanced-learn package (Lemaı̂tre, Nogueira, and Aridas
2016) that contains a number of re-sampling techniques that
are commonly used for classifying imbalanced data. In the
first experiment, all data sets were stratified into ten folds.
We selected data in one fold as small training set, eight
folds as large training set, and the last fold as test set. For
the small training set, we created different learning models
by re-sampling data in that fold using various techniques
mentioned earlier (along with an unmodified version) be-
fore training them using one of several standard classifiers.
Meanwhile, for the large training set, we simply trained the
model using the same classifier. All models are then tested
on the remaining fold. For each model, we recorded the pre-
cision and recall values. We used K-Nearest Neighbor, Lo-
gistic Regression, SVM, and Random Forest as our choices
of standard classifiers. For the preprocessing algorithms, we
used the following settings of our hyperparameters: we set
the “sampling strategy” to “float”, and left other hyperpa-
rameters default for the imbalanced-learn package imple-
mentation. For K-Nearest Neighbor, we performed valida-
tion to determine k. k was set to 5 for most of the data
sets, except for letter (k = 3). For the other classifiers, we
set “class weight” to “balanced” and left all other hyper-
parameters as default.

We note that K-Nearest Neighbor is not a classifier of
bounded VC-dimension, so the analysis of the previous sec-
tion does not actually apply. Analyses of K-Nearest Neigh-
bor (Gyorfi, Lugosi, and Devroye 1996, e.g.) depend on
smoothness properties of the data that would seem to be fa-
vorable for the intuitions behind techniques like SMOTE.
Nevertheless, we will see that even in cases where K-Nearest
Neighbor is rather successful, these techniques for directly
correcting class imbalance not only do not strictly help, they
may actually harm precision and recall.

In addition, to verify the the relationship between the
number of examples and the performance in imbalanced and
balanced settings, we ran a fine-grained experiment with in-
creasing sizes of the data fold. We chose two large data
sets (letter and drug discovery); selected the methods that
seemed to be working on them from the first experiment;

then repeated the first experiment with K-Nearest Neighbor,
varying the size of the small training set. For both experi-
ments, to get stable results, we repeated the experiment 100
times and recorded the mean and standard deviation values.

Results and Discussion For the first experiment, results
are shown in Table 2 (K-NN), Table 3 (Logistic Regression),
Table 4 (SVM), and Table 5 (Random Forest), which con-
tains the precision and recall results of training on the results
of sampling techniques on the small training set as well as
the results of training on two uncorrected data sets, one small
and one large. For almost all of the data sets, the results sug-
gest that we can improve the precision and recall simply by
increasing the size of the training set, and this effect is not
matched by applying the methods for class imbalance. In-
deed, the only exception(s) to this were SMOTE+SVM and
SMOTE+ENN with Random Forest on the drug discovery
data set; we will discuss this in more detail later. Meanwhile,
compared to simply performing no correction, the methods
aimed at correcting the imbalance frequently improve re-
call at the cost of precision or vice versa. They might even
harm either precision, recall, or both. Except when Ran-
dom Forest was used, the only seven exceptions (out of 96
conditions) where both precision and recall improved were
SMOTE+SVM and SMOTE+ENN for abalone with K-NN
and logistic regression and Oversampling, SMOTE+SVM,
and SMOTE+ENN for letter with SVM.

In the case of Random Forest, SMOTE+SVM and
SMOTE+ENN improved both precision and recall on all
data sets except satimage. Easy Ensemble improved both
precision and recall on abalone. Oversampling improved
both precision and recall for both abalone and letter, and
SMOTE+Tomek also improved both for letter. We note that
no method improved both precision and recall for satim-
age using Random Forest. We believe that the reason for
these methods’ marked success on Random Forest is as sug-
gested by Japkowicz and Stephen (2002): the imbalance cor-
rection methods were designed using a decision tree clas-
sifier as their benchmark, and hence narrowly address the
issues decision tree classifiers face. Nevertheless, as noted
by Japkowicz and Stephen in the case of accuracy, these
methods do not generalize well across different classifiers
(e.g. SVM). What is different for precision-recall is that our
theoretical bounds show that class imbalance still poses an
inherent problem for all classifiers. In particular, a method
like SVM will show the effect of class imbalance under
precision-recall but not accuracy. (Indeed, Japkowicz and
Stephen observed that the accuracy achieved by SVM was
unaffected by the class imbalance.) We stress that the per-
formance of an algorithm on a given data distribution is not
simply determined by the class imbalance: it also depends
on how well the representations used can fit the data distri-
bution, and how successful the algorithm is at fitting them.

For the second experiment, results are shown in Table 6,
containing the precision and recall results of applying dif-
ferent sampling techniques versus no modification on in-
creasing sizes of the small training set. For both data sets
(letter and drug discovery), precision and recall improved

4044



as the size of the training set increased, but still imbalance
correction methods showed no clear benefit. It suggests that
precision and recall indeed scale by the size of the train-
ing set, strengthening our observation that the the effect of
adding more data dominates the impact of imbalance correc-
tion methods in terms of precision and recall performance.

In general, both experiments corroborate our theoretical
conclusion that training on a large data set would improve
the performance (i.e. precision and recall) of the class im-
balance problem, and that the methods aimed at simply “cor-
recting” the class imbalance are not reliable. Thus, our ad-
vice in general is not to rely on the imbalance correction
methods as a means of achieving high precision and recall
whereas acquiring more data, when available, does help.

5 Ramifications and Advice to Practitioners
Our main finding is negative: in the presence of severe class
imbalance, it is not possible to reliably achieve high pre-
cision and recall unless one possesses a large amount of
training data. In some typical applications, such as machine
translation, we observed that the amount of training data
needed to obtain a meaningful indication of what word to
use in a translation by statistical methods alone borders on
the implausible. We find that methods that have been pro-
posed to correct the class imbalance directly simply should
not work, since there is an inherent statistical barrier. (And
conversely, if there were enough data available, then stan-
dard machine learning techniques will do and the methods
to correct the imbalance are not needed.)

To a practitioner faced with such a task, simply giving
up is not an option. Our results suggest inherent limita-
tions of purely data-driven methods for such tasks: one sim-
ply should not trust machine learning algorithms to provide
rules of high precision and recall on a typical size data set
with high imbalance any more than one would trust them
to provide high accuracy rules on a data set of a handful of
examples (e.g., a training set of size 10-50 in practice). The
advice we would give to such a practitioner would be the
same in both cases, that is, to try to exploit some kind of
prior knowledge about the domain.

For example, in the case of natural language tasks, there
may not be enough data to learn the appropriate usage of un-
common, informative words. But, definitions of these words
that approximately indicate their usage are readily available
in dictionaries. Indeed, we observe that humans learning a
language (whether it is their native language or a foreign
language) do not learn many of these words from everyday
speech, but rather through definitions that are explicitly pro-
vided in language classes or dictionaries. Thus, while statis-
tical methods might be very good at learning the usage of
common words or phrases, we believe that the knowledge
provided by the rules in a dictionary should be used to com-
plement this understanding of the basic language to achieve
adequate precision for tasks such as machine translation.

Similarly, in the case of the hospital early warning sys-
tems, much is known about conditions such as cardiac arrest.
We hope that this explicit knowledge, properly encoded and
integrated into the learning algorithm, could be used to help
achieve high precision in the classification task in spite of

Table 2: Precision and Recall values for models that apply
different imbalance-correction methods on the small train-
ing set versus K-NN alone using the large training set

(a) abalone

Size Technique Precision Recall

417

No correction 0.2500±0.0000 0.1025±0.0000
Oversampling 0.2439±0.0000 0.5128±0.0000
Undersampling 0.2000±0.0127 0.8790±0.0419
Easy Ensemble 0.2470±0.0195 0.5590±0.0671
NearMiss-3 0.2044±0.0000 0.7179±0.0000
SMOTE+SVM 0.2640±0.0195 0.6130±0.0546
SMOTE+ENN 0.2530±0.0183 0.6490±0.0513
SMOTE+Tomek 0.2290±0.0100 0.6850±0.0402
SMOTE+CNN 0.2030±0.0000 0.3077±0.0000

16K No correction 0.5263±0.0000 0.2564±0.0000
(b) letter

Size Technique Precision Recall

2K

No correction 0.9500±0.0000 0.9620±0.0000
Oversampling 0.9290±0.0000 0.9870±0.0000
Undersampling 0.2620±0.0305 0.9970±0.0053
Easy Ensemble 0.7420±0.0400 1.0000±0.0000
NearMiss-3 0.1850±0.0000 0.9750±0.0000
SMOTE+SVM 0.8570±0.0097 1.0000±0.0000
SMOTE+ENN 0.8650±0.0128 1.0000±0.0000
SMOTE+Tomek 0.8550±0.0170 1.0000±0.0000
SMOTE+CNN 0.5910±0.0000 0.9873±0.0000

16K No correction 0.9870±0.0000 0.9870±0.0000
(c) satimage

Size Technique Precision Recall

643

No correction 0.6707±0.0000 0.5308±0.0000
Oversampling 0.4170±0.0022 0.7770±0.0015
Undersampling 0.2950±0.0356 0.9100±0.0269
Easy Ensemble 0.4100±0.0148 0.7770±0.0271
NearMiss-3 0.3079±0.0000 0.7630±0.0000
SMOTE+SVM 0.4700±0.0070 0.8100±0.0123
SMOTE+ENN 0.3850±0.0215 0.8570±0.0135
SMOTE+Tomek 0.3750±0.0112 0.8630±0.0125
SMOTE+CNN 0.5000±0.0000 0.6303±0.0000

5149 No correction 0.7513±0.0000 0.6730±0.0000
(d) drug discovery

Size Technique Precision Recall

50K

No correction 0.4825±0.0000 0.4613±0.0000
Oversampling 0.7222±0.0001 0.3714±0.0001
Undersampling 0.0017±0.0002 0.7657±0.0911
Easy Ensemble 0.0042±0.0006 0.5429±0.0313
NearMiss-3 0.0012±0.0000 0.5429±0.0000
SMOTE+SVM 0.4074±0.0006 0.3143±0.0002
SMOTE+ENN 0.1650±0.0001 0.4857±0.0005
SMOTE+Tomek 0.1652±0.0010 0.4853±0.0005
SMOTE+CNN 0.6257±0.0000 0.2571±0.0000

950K No correction 0.9474±0.0000 0.6429±0.0000

the relatively small amount of data available to train such
systems.

We caution that while more general strategies, such as us-
ing simple parametric models, have long been used in data-
poor conditions, the catch here is that in order to achieve
high precision, we know that we must use a method for clas-
sification that is expressive enough to achieve an extremely
low error rate in the presence of class imbalance. Thus, we
don’t generally expect that these “rough approximations”
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Table 3: Precision and Recall values for models that apply
different imbalance-correction methods on the small train-
ing set versus Logistic Regression alone using the large
training set

(a) abalone

Size Technique Precision Recall

417

No correction 0.2250±0.0000 0.2450±0.0000
Oversampling 0.2170±0.0000 0.8970±0.0000
Undersampling 0.2090±0.0060 0.8670±0.0108
Easy Ensemble 0.2160±0.0033 0.9080±0.0132
NearMiss-3 0.1940±0.0000 0.7180±0.0000
SMOTE+SVM 0.2390±0.0350 0.5560±0.0205
SMOTE+ENN 0.2250±0.0055 0.8380±0.0173
SMOTE+Tomek 0.2170±0.0024 0.9030±0.0108
SMOTE+CNN 0.1980±0.0000 0.5070±0.0000

3342 No correction 0.2530±0.0000 0.2650±0.0000
(b) letter

Size Technique Precision Recall

2K

No correction 0.8950±0.0000 0.8610±0.0000
Oversampling 0.3880±0.0067 0.9750±0.0000
Undersampling 0.2900±0.0289 0.9810±0.0136
Easy Ensemble 0.3570±0.0195 0.9750±0.0000
NearMiss-3 0.2350±0.0000 0.9620±0.0000
SMOTE+SVM 0.3200±0.0139 0.9920±0.0106
SMOTE+ENN 0.3960±0.0055 0.9720±0.0080
SMOTE+Tomek 0.4030±0.0055 0.9750±0.0000
SMOTE+CNN 0.5340±0.0000 0.8990±0.0000

16K No correction 0.9210±0.0000 0.8860±0.0000
(c) satimage

Size Technique Precision Recall

643

No correction 0.3090±0.0020 0.1040±0.0000
Oversampling 0.2000±0.0047 0.5310±0.0132
Undersampling 0.1750±0.0136 0.6300±0.0460
Easy Ensemble 0.1970±0.0085 0.5310±0.0280
NearMiss-3 0.1730±0.0000 0.5170±0.0000
SMOTE+SVM 0.2130±0.0052 0.5180±0.0186
SMOTE+ENN 0.2090±0.0080 0.5020±0.0133
SMOTE+Tomek 0.2070±0.0060 0.4970±0.0145
SMOTE+CNN 0.1870±0.0000 0.4740±0.0000

5149 No correction 0.4800±0.0000 0.4500±0.0000
(d) drug discovery

Size Technique Precision Recall

50K

No correction 0.8000±0.0000 0.1540±0.0000
Oversampling 0.0427±0.0002 0.5000±0.0000
Undersampling 0.0029±0.0002 0.8970±0.0222
Easy Ensemble 0.0080±0.0010 0.7690±0.0385
NearMiss-3 0.0010±0.0000 0.8080±0.0000
SMOTE+SVM 0.0465±0.0020 0.4230±0.0000
SMOTE+ENN 0.0441±0.0003 0.5000±0.0000
SMOTE+Tomek 0.0443±0.0000 0.5000±0.0000
SMOTE+CNN 0.0114±0.0000 0.3850±0.0000

950K No correction 1.0000±0.0000 0.5000±0.0000

will do for such tasks. Some kind of richer representation
of knowledge and classification decisions will be necessary
to achieve high precision.

6 Future Work
As mentioned earlier, we did not obtain any bounds for the
sample complexity of additive-error agnostic learning. This

Table 4: Precision and Recall values for models that apply
different imbalance-correction methods on the small train-
ing set versus SVM alone using the large training set

(a) abalone

Size Technique Precision Recall

417

No correction 0.1900±0.0000 0.9230±0.0000
Oversampling 0.1890±0.0003 0.9230±0.0002
Undersampling 0.1950±0.0060 0.8260±0.0713
Easy Ensemble 0.1890±0.0031 0.9280±0.0265
NearMiss-3 0.1890±0.0000 0.6920±0.0000
SMOTE+SVM 0.1890±0.0042 0.9000±0.0307
SMOTE+ENN 0.1880±0.0031 0.8900±0.0320
SMOTE+Tomek 0.1890±0.0045 0.9310±0.0173
SMOTE+CNN 0.1890±0.0000 0.6920±0.0000

16K No correction 0.2100±0.0000 0.9280±0.0000
(b) letter

Size Technique Precision Recall

2K

No correction 0.9620±0.0000 0.9490±0.0000
Oversampling 0.9740±0.0000 0.9490±0.0000
Undersampling 0.9180±0.0238 0.9700±0.0065
Easy Ensemble 0.9630±0.0040 0.9510±0.0040
NearMiss-3 0.9040±0.0000 0.9490±0.0000
SMOTE+SVM 0.9740±0.0001 0.9660±0.0061
SMOTE+ENN 0.9640±0.0053 0.9490±0.0000
SMOTE+Tomek 0.9620±0.0000 0.9490±0.0000
SMOTE+CNN 0.9730±0.0000 0.9240±0.0000

16K No correction 1.0000±0.0000 1.0000±0.0000
(c) satimage

Size Technique Precision Recall

643

No correction 0.3490±0.0000 0.3130±0.0000
Oversampling 0.3490±0.0022 0.3130±0.0000
Undersampling 0.1740±0.0217 0.6130±0.0763
Easy Ensemble 0.2710±0.0266 0.3550±0.0385
NearMiss-3 0.1300±0.0000 0.5120±0.0000
SMOTE+SVM 0.3270±0.0165 0.3320±0.0211
SMOTE+ENN 0.3390±0.0113 0.3570±0.0125
SMOTE+Tomek 0.3400±0.0010 0.3660±0.0120
SMOTE+CNN 0.1850±0.0000 0.5310±0.0000

5149 No correction 0.5920±0.0000 0.5780±0.0000
(d) drug discovery

Size Technique Precision Recall

50K

No correction 0.1420±0.0000 0.5770±0.0000
Oversampling 0.2100±0.0000 0.5000±0.0000
Undersampling 0.0023±0.0005 0.8210±0.0588
Easy Ensemble 0.0058±0.0005 0.8210±0.0222
NearMiss-3 0.0007±0.0000 0.5380±0.0000
SMOTE+SVM 0.1640±0.0025 0.4230±0.0000
SMOTE+ENN 0.2090±0.0000 0.5380±0.0000
SMOTE+Tomek 0.2080±0.0018 0.5380±0.0000
SMOTE+CNN 0.0098±0.0000 0.7310±0.0000

950K No correction 0.2200±0.0000 0.9230±0.0000

is the one main significant piece missing from the picture
for the sample complexity of precision and recall. Indeed,
the key question here is, does the overhead scale like 1/µ or
1/µ2 (like the dependence on the additive error parameter)?

There is also a much larger family of questions one might
seek to answer along similar lines: in the scope of this paper,
we focus only on the precision and recall of the learned clas-
sifier. However, in some cases, precision-recall may not be
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Table 5: Precision and Recall values for models that apply
different imbalance-correction methods on the small train-
ing set versus Random Forest alone using the large training
set

(a) abalone

Size Technique Precision Recall

417

No correction 0.3570±0.0000 0.3250±0.0000
Oversampling 0.3580±0.0340 0.3330±0.0435
Undersampling 0.2370±0.0169 0.3590±0.0367
Easy Ensemble 0.3620±0.0254 0.4690±0.0500
NearMiss-3 0.2580±0.0000 0.7950±0.0000
SMOTE+SVM 0.3600±0.0146 0.5030±0.0630
SMOTE+ENN 0.3590±0.0305 0.5410±0.0633
SMOTE+Tomek 0.3500±0.0220 0.6150±0.0270
SMOTE+CNN 0.2790±0.0000 0.3080±0.0000

16K No correction 0.4850±0.0000 0.5130±0.0000
(b) letter

Size Technique Precision Recall

2K

No correction 0.9590±0.0000 0.8860±0.0000
Oversampling 0.9590±0.0000 0.9040±0.0000
Undersampling 0.5570±0.0828 0.9890±0.0110
Easy Ensemble 0.9400±0.0173 0.9590±0.0144
NearMiss-3 0.3160±0.0000 0.9870±0.0000
SMOTE+SVM 0.9600±0.0042 0.9410±0.0169
SMOTE+ENN 0.9600±0.0006 0.9090±0.0144
SMOTE+Tomek 0.9600±0.0006 0.9110±0.0180
SMOTE+CNN 0.9480±0.0000 0.9240±0.0000

16K No correction 0.9740±0.0000 0.9370±0.0000
(c) satimage

Size Technique Precision Recall

643

No correction 0.7480±0.0000 0.4080±0.0000
Oversampling 0.6580±0.0192 0.5580±0.0000
Undersampling 0.3840±0.0419 0.8510±0.0404
Easy Ensemble 0.6110±0.0185 0.6000±0.0111
NearMiss-3 0.4400±0.0000 0.7300±0.0000
SMOTE+SVM 0.6250±0.0084 0.5950±0.0182
SMOTE+ENN 0.6270±0.0104 0.6040±0.0090
SMOTE+Tomek 0.6260±0.0126 0.6120±0.0130
SMOTE+CNN 0.6610±0.0000 0.5730±0.0000

5149 No correction 0.8110±0.0000 0.5800±0.0000
(d) drug discovery

Size Technique Precision Recall

50K

No correction 0.8890±0.0000 0.6150±0.0000
Oversampling 1.0000±0.0001 0.1540±0.0001
Undersampling 0.0032±0.0005 0.8210±0.0444
Easy Ensemble 0.0780±0.0136 0.6030±0.0222
NearMiss-3 0.0008±0.0000 0.8850±0.0000
SMOTE+SVM 1.0000±0.0000 0.8970±0.0022
SMOTE+ENN 1.0000±0.0000 0.7690±0.0000
SMOTE+Tomek 1.0000±0.0000 0.1280±0.0222
SMOTE+CNN 1.0000±0.0000 0.1540±0.0000

950K No correction 1.0000±0.0000 0.7690±0.0000

the most desirable metric (e.g. when the number of true neg-
ative examples is large). We might also consider examining
the sample complexity of learning under other metrics such
as the Brier Score, H-measure, F-measure, etc. The empir-
ical results of Raeder et al. (2012) suggest that these mea-
sures likewise will depend on the class imbalance, but the
question is (of course) how precisely achieving bounds on

Table 6: Precision and Recall values for models that apply
different sampling methods versus K-NN alone on varying
sizes of data sets

(a) letter

Size Technique Precision Recall

4K

Oversampling 0.8850±0.0000 0.9750±0.0000
Easy Ensemble 0.7270±0.0246 0.9890±0.0072
SMOTE+SVM 0.8490±0.0068 0.9870±0.0000
SMOTE+Tomek 0.8550±0.0059 0.9870±0.0000
SMOTE+CNN 0.8520±0.0049 0.9870±0.0000
No correction 0.9625±0.0000 0.9750±0.0000

8K

Oversampling 0.9260±0.0046 0.9870±0.0000
Easy Ensemble 0.8120±0.0212 0.9970±0.0053
SMOTE+SVM 0.9080±0.0000 1.0000±0.0000
SMOTE+Tomek 0.9060±0.0095 1.0000±0.0000
SMOTE+CNN 0.9020±0.0053 1.0000±0.0000
No correction 0.9740±0.0000 0.9620±0.0000

12K

Oversampling 0.9450±0.0000 0.9870±0.0000
Easy Ensemble 0.9260±0.0278 0.9960±0.0061
SMOTE+SVM 0.9450±0.0000 0.9870±0.0000
SMOTE+Tomek 0.9570±0.0055 1.0000±0.0000
SMOTE+CNN 0.9550±0.0055 1.0000±0.0000
No correction 0.9870±0.0000 0.9870±0.0000

16K No correction 0.9870±0.0000 0.9870±0.0000
(b) drug discovery

Size Technique Precision Recall

100K

Oversampling 0.7350±0.0015 0.4084±0.0015
SMOTE+SVM 0.4791±0.0008 0.3620±0.0015
SMOTE+Tomek 0.2310±0.0012 0.5230±0.0008
SMOTE+CNN 0.6733±0.0125 0.3062±0.0020
No correction 0.6042±0.0015 0.5346±0.0030

250K

Oversampling 0.7413±0.0016 0.4218±0.0012
SMOTE+SVM 0.5164±0.0005 0.4168±0.0021
SMOTE+Tomek 0.2857±0.0016 0.5667±0.0010
SMOTE+CNN 0.7055±0.0105 0.3350±0.0022
No correction 0.7560±0.0022 0.5873±0.0025

500K

Oversampling 0.7482±0.0013 0.4432±0.0022
SMOTE+SVM 0.5338±0.0009 0.4542±0.0025
SMOTE+Tomek 0.3155±0.0012 0.6069±0.0015
SMOTE+CNN 0.7241±0.0110 0.3782±0.0016
No correction 0.8437±0.0010 0.6255±0.0017

950K No correction 0.9474±0.0003 0.6429±0.0001

these alternative measures of loss depends on these parame-
ters. Relatedly, the top-k metrics are often used in informa-
tion retrieval to overcome the problem of low precision in
such challenging settings. It would be interesting to better
understand the sample complexity of these metrics as well.
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